¡ –k‘º Œ\ˆêC ”ŽŽmiHŠwj/ Dr. Keiichi KITAMURA

‰¡•l‘—§‘åŠw@y‹³Žö / Associate Professor at Yokohama National University, Japan
› JAXA‘åŠw‹¤“¯—˜—pƒVƒXƒeƒ€Œ¤‹†ˆõ
› kitamuraynu.ac.jp@i""‚Í"@"‚É•Ï‚¦‚Ä‚­‚¾‚³‚¢j
› 2024”N04ŒŽŒ»Ý‚Ìî•ñ‚Å‚·

œ —ߘa4”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ‰ÈŠw‹ZpÜiŒ¤‹†•”–åj‚ð JAXA“ˆ”ŽŽm‚Æ‹¤“¯ŽóÜ‚µ‚Ü‚µ‚½i2022/04/20jD

œ SpringerŽÐ‚æ‚èÙ’˜"Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method"‚ªŠ§s‚³‚ê‚Ü‚µ‚½(2020/11/01)D
Advancement of Shock Capturing Computational Fluid Dynamics Methods

œ •½¬31”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ŽáŽè‰ÈŠwŽÒÜ‚ðŽóÜ‚µ‚Ü‚µ‚½i2019/04/17jD

œ ƒCƒvƒVƒƒ“ƒƒPƒbƒg‚Ì‹ó—͉ðÍ—áiJAXAÝEŽžjF
’˜‘
  1. Kitamura, K., "Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method," Springer Nature Singapore, 2020i’P’˜j. DOI: 10.1007/978-981-15-9011-5, ISBN 978-981-15-9010-8, (eBook) 978-981-15-9011-5
  2. –k‘ºŒ\ˆêC“ˆ‰pŽuCu‹ó”ò‚ÔƒNƒ‹ƒ}@`‹ó‚̃‚ƒrƒŠƒeƒBŠv–½‚ÉŒü‚¯‚½ŠJ”­Å‘Oü`vw‘æ‚RÍ@ŽÔ‘ÌÝŒv‹Zp@‘æ‚Pß@‹ó‹C—ÍŠw‚É‚æ‚é‹ó”ò‚ÔƒNƒ‹ƒ}ÝŒvxC(Š”)ƒGƒkEƒeƒB[EƒGƒXC2020i•ª’SŽ·•MjD@ISBN 978-4-86043-678-0 C3065
¸“Ç•t˜_•¶F@75•Ò
  1. Tsukamoto, Y., and Kitamura, K.: Numerical Study of Transonic Buffet on SC(2)-0518 and OAT15A with Vortex Generators, AIAA Journal, (Accepted).
  2. Fukushima, G., and Kitamura, K.: Improved hybrid approach of monotonic upstream-centered scheme for conservation laws and discontinuity sharpening technique for steady and unsteady flows, Physics of Fluids, 36, 046110 (2024). https://doi.org/10.1063/5.0198163 [Open Access].
  3. Tamai, R., Mamashita, T., Nonaka, S., Kitamura, K., Odagiri, K., and Ogawa, H.: A Study on Aerodynamic Characteristics of a Slender Body in Pitching Motion by Surface Pressure Measurement, Journal of Evolving Space Activities, (Accepted).
  4. Furusawa, Y., Kitamura, K., Ikami, T., Nagai, H.: Numerical Study on Unsteady Flow Field Structure over Wing within Propeller Slipstream at Low-Reynolds-Number, Trans. JSASS, Aerospace Tech. Japan, (Accepted).
  5. Nimura, K., Tsutsui, F., Kitamura, K., and Nonaka, S.: Aerodynamic Effects of Surface Protuberance Size on Slender-bodied Supersonic Vehicle, Journal of Spacecraft and Rockets, Vol. 61, No. 2, March-April 2024, pp.355-368. https://doi.org/10.2514/1.A35714
  6. Furusawa, Y., Kitamura, K., Ikami, T., Nagai, H., Oyama, A.: Numerical Study on Aerodynamic Characteristics of Wing within Propeller Slipstream at Low-Reynolds-Number, Trans. Japan Soc. Aero. Space Sci., Vol. 67, No. 1, pp. 1-11, 2024. DOI: 10.2322/tjsass.67.12
  7. Aono, J., and Kitamura, K.: …’†ÕŒ‚”g‚Æ‚ÌŠ±Â‚É‚æ‚è•ö‰ó‚·‚é‘ȉ~Œ`‹C–A‚Ì”’lŒvŽZ(Numerical simulation of elliptic bubble deformation by underwater shock wave), Explosion, Vol.33, No.3 (2023), pp.159-163.
  8. –{–Ø ãÄŒá, “ñ‘º ˜aŽ÷, áÁ•¿ FŠî, –k‘ºŒ\ˆêC–ì’† ‘Fƒ}ƒbƒn0.7‚¨‚æ‚Ñ1.3‚É‚¨‚¯‚é×’·•¨‘̉¡—Í“Á«‚Ö‚Ì“Ë‹NƒTƒCƒY‚̉e‹¿ C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpC22 ŠªCpp. 71-78, 2023”N. https://doi.org/10.2322/astj.22.71
  9. Kitamura, K., Takagi, Y., Harada, T., Yasumura, Y., Kanamori, M., and Hashimoto, A.: Leading-Edge Separation Behaviors in SA RANS and SA-Based DDES: Simple Modifications for Improved Prediction, Computers & Fluids, Volume 255, 15 April 2023, 105814. https://doi.org/10.1016/j.compfluid.2023.105814 [Open Access]
  10. Furusawa, Y., and Kitamura, K.: Stability Effect of Multidimensional Velocity Components in Numerical Flux SLAU, International Journal for Numerical Methods in Fluids, Vol.95, No.6 (2023), pp.992-1010. https://doi.org/10.1002/fld.5183
  11. Aono, J., and Kitamura, K.: Development and Validation of Parameter-Free, Two-Fluid, Viscous Compressible Multiphase Flow Solver for Cough-Droplet Simulations, Journal of Fluid Science and Technology, 2023 Volume 18 Issue 1 Pages JFST0016. https://doi.org/10.1299/jfst.2023jfst0016 [Open Access]
  12. Mamashita, T., Muto, T., Kitamura, K., and Nonaka, S.: Numerical Analysis on Axial Force Characteristics of Reusable Launch Vehicle at 150-180‹ Angles-of-Attack, Transactions of JSASS, 2023 Volume 66 Issue 4 Pages 118-129. https://doi.org/10.2322/tjsass.66.118 [Open Access]
  13. Tsutsui, F., Takagi, Y., Takimoto, H., Kitamura, K., and Nonaka, S.: Side Force Characteristics of Slender-Bodied Supersonic Vehicle with Two Protuberances, Journal of Spacecraft and Rockets, Vol. 59, No. 5 (2022), pp. 1697-1712 doi: https://doi.org/10.2514/1.A35319
  14. Tsutsui, F., Kitamura, K., and Nonaka, S.: Effects of RANS Turbulence Models on Aerodynamics of Slender-Bodied Launch Vehicles with Protuberance, International Journal of Aeronautical and Space Sciences, 2022. https://doi.org/10.1007/s42405-022-00482-3
  15. Aono, J., and Kitamura, K.: An appropriate numerical dissipation for SLAU2 towards shock-stable compressible multiphase flow simulations, Journal of Computational Physics, Volume 462, 1 August 2022, 111256. https://doi.org/10.1016/j.jcp.2022.111256 [Open Access]
  16. Kitamura, K., Yue, Z., Fujimoto, T., Asai, H., Kubota, A., Myokan, M., Ichihara, D., and Sasoh, A.: Numerical and experimental study on the behavior of vortex rings generated by shock-bubble interactions, Physics of Fluids, Volume 34, Issue 4, 046105 (2022). https://doi.org/10.1063/5.0083596
  17. ûü–Ø—YÆC•“¡’q‘¾˜NC–k‘ºŒ\ˆêC–ì’†‘Fƒ_ƒuƒ‹ƒR[ƒ“Œ^ÄŽg—pƒƒPƒbƒg‚ÌŒ}Šp60‹‰¡—Í“Á«‚ÉŠÖ‚·‚é•—“´ŽŽŒ±‚Æ”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WC‘æ70ŠªC‘æ1†Cpp.14-21, 2022. DOI: https://doi.org/10.2322/jjsass.70.14
  18. Kawashima, H., Kitamura, K., and Nonaka, S.: Numerical/Experimental Hybrid Study on Base Pressure and Cavity Pressure Corrections for Transonic Wind Tunnel Tests, Transactions of JSASS, Vol. 65, Issue 3, pp. 116-122 (2022). https://doi.org/10.2322/tjsass.65.116
  19. Mamashita, T., Kitamura, K., and Minoshima, T.: SLAU2-HLLD Numerical Flux with Wiggle-Sensor for Stable Low Mach Magnetohydrodynamics Simulations, Computers & Fluids, Volume 231, 15 December 2021, 105165. https://doi.org/10.1016/j.compfluid.2021.105165 [Open Access]
  20. Kitamura, K., Fukumoto, K., and Mori, K.: Numerical Study of Surface Pressure Fluctuation on Rigid Disk-Gap-Band Type Supersonic Parachutes, AIAA Journal, Vol. 58, No. 12, 2020, pp. 5347-5360. https://arc.aiaa.org/doi/10.2514/1.J059190@[Open Access]
  21. –k‘ºŒ\ˆêC’·’J®‰›–çC“cŒû³lCX_ˆêF‰¡’f•¬—¬‹ó—ÍŠ±Â‚𔺂¤ŽOŽŸŒ³‹É’´‰¹‘¬‹ó—͉Á”M‚Ì”’lŒvŽZC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.19, pp. 141-150, 2020D DOI: 10.2322/astj.JSASS-D-20-00015
  22. Ogawa, S. and Kitamura, K.: Improvement of the Aerodynamic Characteristics of Wings with 3D Laminar Separation Control using the Moving Surface Method, Trans. JSASS, Aerospace Tech. Japan, Vol. 18, No. 6, pp. 289-298, 2020. DOI: 10.2322/tastj.18.289
  23. Kitamura, K., Mamashita, T., and Ryu, D.: SLAU2 applied to Two-Dimensional, Ideal Magnetohydrodynamics Simulations, Computers & Fluids, Volume 209, 15 September 2020, 104635 https://doi.org/10.1016/j.compfluid.2020.104635
  24. Minoshima, T., Kitamura, K., and Miyoshi, T.: A Multistate Low-dissipation Advection Upstream Splitting Method for Ideal Magnetohydrodynamics, The Astrophysical Journal Supplement Series, Vol.248:12 (21pp), 2020 May. https://doi.org/10.3847/1538-4365/ab8aee
  25. Takagi, Y., Aogaki, T., Kitamura, K., and Nonaka, S.: Numerical Study on Aerodynamic Characteristics of Slender-bodied Reusable Rockets Using Fins and Vortex Flaps at Very High Angles of Attack, Trans. JSASS, Aerospace Tech. Japan, Vol. 18, No. 4, pp. 149-158, 2020. https://doi.org/10.2322/tastj.18.149
  26. Kitamura, K. and Shima, E.: AUSM-like Expression of HLLC and Its All-Speed Extension, International Journal for Numerical Methods in Fluids, Vol.92, 2020, pp.246-265. DOI: 10.1002/fld.4782
  27. Fujimoto, T., Kawasaki, T., and Kitamura, K.: Canny-Edge-Detection/Rankine-Hugoniot-conditions unified shock sensor for inviscid and viscous flows, Journal of Computational Physics, Volume 396, 1 November 2019, Pages 264-279.@DOI: 10.1016/j.jcp.2019.06.071 [Open Access]
  28. Kitamura, K. and Shima, E.: Numerical Experiments on Anomalies from Stationary, Slowly Moving, and Fast-Moving Shocks, AIAA Journal, Vol.57, No.4, 2019, pp.1763-1772. https://arc.aiaa.org/doi/abs/10.2514/1.J057366
  29. ‚—Ñq‹PC–k‘ºŒ\ˆêFŠJŽPŽž‚Ì’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚ð–Í‹[‚µ‚½ŠÈˆÕŒ`ó“àŠO‚Ì”’l—¬‘̉ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.18, pp.67-72, 2019. https://doi.org/10.2322/astj.JSASS-D-18-00016
  30. Kawauchi, K., Harada, T., Kitamura, K., and Nonaka, S.: Experimental and Numerical Investigations of Slender Body Side Force with Asymmetric Protuberances, Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1346-1357. https://arc.aiaa.org/doi/abs/10.2514/1.A34439
  31. Inatomi, A., Kitamura, K., and Nonaka, S.: Numerical Analysis on Reusable Rocket Aerodynamics with Reduced-Yaw-Force Configurations, Trans. JSASS Aerospace Tech. Japan, Vol. 17, Issue 4, 2019, pp.439-446. https://doi.org/10.2322/tastj.17.439
  32. Aogaki, T., Kitamura, K., and Nonaka, S.: Computational Study on Finned Reusable Rocket during Turnover, Trans. JSASS Aerospace Tech. Japan, Vol.17, Issue 2, 2019, pp.104-110. https://doi.org/10.2322/tastj.17.104
  33. Harada, T., Kitamura, K., and Nonaka, S.: Roll Moment Characteristics of Supersonic Flight Vehicle Equipped with Asymmetric Protuberance, Trans. JSASS Aerospace Tech. Japan, Vol.17, Issue 2, 2019, pp.111-119. https://doi.org/10.2322/tastj.17.111
  34. Kitamura, K., and Balsara, D.S.: Hybridized SLAU2-HLLI and Hybridized AUSMPW+-HLLI Riemann Solvers for Accurate, Robust, and Efficient Magnetohydrodynamics (MHD) Simulations, Part I: One-Dimensional MHD, Shock Waves, July 2019, Volume 29, Issue 5, pp 611-627. doi:10.1007/s00193-018-0842-0
  35. Aogaki, T., Kitamura, K., and Nonaka, S.: High Angle-of-Attack Pitching Moment Characteristics of Slender-Bodied Reusable Rocket, Journal of Spacecraft and Rockets, Vol. 55, No. 6, 2018, pp.1476-1489. doi:10.2514/1.A34211 [Preprint]
  36. Kitamura, K., Aogaki, T., Inatomi, A., Fukumoto, K., Takahama, T., and Hashimoto, A.: Post Limiters and Simple Dirty-Cell Detection for Three-Dimensional, Unstructured, (Unlimited) Aerodynamic Simulations, AIAA Journal, Vol. 56, No. 8, 2018, pp. 3192-3204. doi:10.2514/1.J056683 [Preprint]
  37. Kitamura, K. and Shima, E.: Pressure-equation-based SLAU2 for oscillation-free, supercritical flow simulations, Computers & FluidsCVol.163, 2018, pp.86-96. doi:10.1016/j.compfluid.2018.01.001
  38. –k‘ºŒ\ˆêC¬ì—DC‚à_r‹§F•\–ʈړ®–@‚É‚æ‚é—ƒ‚̒჌ƒCƒmƒ‹ƒY”‹ó—Í“Á«‚̉ü‘PC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.17, pp.227-236, 2018. doi:10.2322/astj.JSASS-D-17-00056
  39. Kitamura, K. and Hashimoto, A.: Simple a posteriori slope limiter (Post Limiter) for high resolution and efficient flow computations, Journal of Computational Physics, Vol.341, 2017, pp. 313-340. doi:10.1016/j.jcp.2017.04.002
  40. Kitamura, K. and Nonomura, T.: Assessment of WENO-extended two-fluid modelling in compressible multiphase flows, International Journal of Computational Fluid Dynamics, Vol.31, Issue 3, 2017, pp.188-194. doi:10.1080/10618562.2017.1311410
  41. Kitamura, K.: Assessment of SLAU2 and Other Flux Functions with Slope Limiters in Hypersonic Shock-Interaction Heating, Computers & Fluids, Vol.129, 2016, pp.134-145. doi:10.1016/j.compfluid.2016.02.006
  42. Kitamura, K. and Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations, Computers & Fluids, Vol.126, 2016, pp. 41-57. doi:10.1016/j.compfluid.2015.11.014
  43. “ˆ‰pŽuC–k‘ºŒ\ˆêF@‰A“IMUSCL–@‚ÆSMAC–@‚Ì“‡‚É‚æ‚é‘S‘¬“xˆ³k«CFD‰ð–@‚ɂ‚¢‚ÄC‚È‚ª‚êCVol.35, No.5, 2016, pp.391-401 [Paper]D
  44. Harada, N., Kitamura, K.(*), Okutsu, Y., Hamamoto, N., Mori, K., and Nakamura, Y.: Preliminary, One-Way Coupled, Rain-Droplets/Airflow Simulations over Automobile, International Journal of Automotive Engineering, Vol.6, No.4, 2015, pp.105-112.https://doi.org/10.20485/jsaeijae.6.4_105
  45. “cŒû³lCå”g’¼Ž÷C‰ª“c“¹®CˆÀˆäˆê•½C–k‘ºŒ\ˆêCX_ˆêC’†‘º‰À˜NF •z»’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚Ì‹ó—Í“Á«C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.63 (2015)CNo.6, pp.241-247Ddoi:10.2322/jjsass.63.241
  46. Kitamura, K. and Nonomura, T.: Simple and Robust HLLC Extensions of Two-Fluid AUSM for Multiphase Flow Computations, Computers & Fluids, Vol.100, 2014, pp.321-335. doi:10.1016/j.compfluid.2014.05.019
  47. Kitamura, K., Liou, M.-S., and Chang, C.-H.: Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations, Communications in Computational Physics, Vol.16, No.3, 2014, pp.632-674. doi:10.4208/cicp.020813.190214a
  48. Nonomura, T., Kitamura, K., and Fujii, K.: A Simple Interface Sharpening Technique with a Hyperbolic Tangent Function Applied to Compressible Two-Fluid Modeling, Journal of Computational Physics, Vol.258, 2014, pp.95-117. doi: 10.1016/j.jcp.2013.10.021
  49. Mano, S., Kitamura, K.(*), Doi, K., and Nakamura, Y.: Numerical Simulation Based on CFD for Aerodynamic Characteristics of Kite in Flight, Trans. JSASS Aerospace Tech. Japan, Vol.12, pp.1-10, 2014. doi:10.2322/tastj.12.1
  50. Kitamura, K., Nonaka, S., Kuzuu, K., Aono, J., Fujimoto, K., and Shima, E.: Numerical and Experimental Investigations of Epsilon Launch Vehicle Aerodynamics at Mach 1.5, Journal of Spacecraft and Rockets, Vol.50, No.4, 2013, pp.896-916. doi:10.2514/1.A32284
  51. Kitamura, K. and Shima, E.: Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes, Journal of Computational Physics, Vol.245, 2013, pp.62-83. doi:10.1016/j.jcp.2013.02.046
  52. Shima, E., Kitamura, K.(*), and Haga, T.: Green-Gauss/Weighted-Least-Squares Hybrid Gradient Reconstruction for Arbitrary Polyhedra Unstructured Grids, AIAA Journal, Vol.51, No.11, 2013, pp.2740-2747. doi: 10.2514/1.J052095
  53. Shima, E. and Kitamura, K.(*): Multidimensional Numerical Noise from Captured Shockwave and Its Cure, AIAA Journal, Vol.51, No.4, 2013, pp.992-998. doi: 10.2514/1.J052046
  54. Yasuda, H., Kitamura, K., and Nakamura, Y.: Numerical Analysis of Flow Field and Aerodynamic Characteristics of a Quadrotor, Trans. JSASS Aerospace Tech. Japan, Vol.11, pp.61-70, 2013. doi:10.2322/tastj.11.61
  55. Shima, E. and Kitamura, K.: New approaches for computation of low Mach number flows, Computers & Fluids, Vol. 85, 2013, pp.143-152. http://dx.doi.org/10.1016/j.compfluid.2012.11.017
  56. Kitamura, K., Shima, E., and Roe, P.: Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions, AIAA Journal, Vol. 50, No. 12, 2012, pp.2655-2669. doi:10.2514/1.J051227
  57. Kitamura, K., and Shima, E.: Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations, AIAA Journal, Vol. 50, No. 6, 2012, pp.1415-1426. doi:10.2514/1.J051269
  58. Kitamura, K., Shima, E., Fujimoto, K., and Wang, Z.J.: Performance of Low-Dissipation Euler Fluxes and Preconditioned LU-SGS at Low Speeds, Communications in Computational Physics, Vol.10, No.1, 2011, pp.90-119. doi:10.4208/cicp.270910.131110a
  59. Kitamura, K., Fujimoto, K., Kuzuu, K., Shima, E., and Wang, Z.J.: Validation of Arbitrary Unstructured CFD Code for Aerodynamic Analyses, Trans. Japan Soc. Aero. Space Sci., Vol.53, No.182, 2011, pp.311-319. doi:10.2322/tjsass.53.311 JOI:JST.JSTAGE/tjsass/53.311
  60. Shima, E. and Kitamura, K.(*): Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds, AIAA Journal, Vol.49, No.8, 2011, pp.1693-1709. doi:10.2514/1.55308
  61. –k‘ºŒ\ˆêCŠ‹¶˜alC“ü–å•üŽqC–ì’†‘C“¡–{Œ\ˆê˜YC•Ÿ“YXNC“ˆ‰pŽuF@ ƒCƒvƒVƒƒ“ƒƒPƒbƒg ƒ}ƒbƒn0.7‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì•—“´ŽŽŒ±‚Æ”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.10 (2011), pp.43-50D doi:10.2322/astj.10.43
  62. –k‘ºŒ\ˆêC“¡–{Œ\ˆê˜YCŠ‹¶˜alC–ì’†‘C“ü–å•üŽqC•Ÿ“YXNC“ˆ‰pŽuF@ ŽŸŠúŒÅ‘̃ƒPƒbƒg‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.10 (2011), pp.1-10D doi:10.2322/astj.10.1
  63. Kitamura, K., Shima, E., Nakamura, Y., and Roe, P.L.: Evaluation of Euler Fluxes for Hypersonic Heating Computations, AIAA Journal, Vol.48, No.4, 2010, pp.763-776. doi:10.2514/1.41605
  64. –k‘ºŒ\ˆêC“¡–{Œ\ˆê˜YC–ì’†‘C“ü–å•üŽqC•Ÿ“YXNC“ˆ‰pŽuF@ ŽŸŠúŒÅ‘̃ƒPƒbƒg‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì•—“´ŽŽŒ±C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.9 (2010), pp.9-14D doi:10.2322/astj.9.9
  65. Ozawa, H., Kitamura, K., Hanai, K., Mori, K., and Nakamura, Y.: Unsteady Aerodynamic Interaction between Two Bodies at Hypersonic Speed, Trans. Japan Soc. Aero. Space Sci., Vol.53, No.180, 2010, pp.114-121. doi:10.2322/tjsass.53.114
  66. ¬àVŒ[ŽfC‰ÔˆäŸËC–k‘ºŒ\ˆêCX_ˆêC’†‘º‰À˜NF@ ‹É’´‰¹‘¬ÕŒ‚”gE‹«ŠE‘wŠ±Â‚É‚¨‚¯‚éCrack‚Ì‹ó—͉Á”M—¦‚ւ̉e‹¿C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.58 (2010), No.674, pp.68-75Ddoi:10.2322/jjsass.58.68 JOI:JST.JSTAGE/jjsass/58.68
  67. Kitamura, K., Roe, P., and Ismail, F.: Evaluation of Euler Fluxes for Hypersonic Flow Computations, AIAA Journal, Vol.47, No.1, 2009, pp.44-53. doi:10.2514/1.33735
  68. Ibrahim, M.K., Nakamura, T., Kitamura, K., Mori, K., and Nakamura, Y.: The Role of Vortices in Side Jet/Blunt Body Interaction at Hypersonic Speed, Trans. JSASS Space Tech. Japan, Vol.7, 2009, pp.1-10. doi:10.2322/tstj.7.1
  69. ¬àVŒ[ŽfC–k‘ºŒ\ˆêC‰ÔˆäŸËCŽOD—–çCX_ˆêC’†‘º‰À˜NF@ ’´‰¹‘¬‹ó—ÍŠ±Â‚ð—˜—p‚µ‚½ƒJƒvƒZƒ‹Œ^‰F’ˆ—A‘—ƒVƒXƒeƒ€‚Ì‹Ù‹}•ª—£C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.57 (2009), No.664, pp.175-182Ddoi:10.2322/jjsass.57.175 JOI:JST.JSTAGE/jjsass/57.175
  70. –k‘ºŒ\ˆêC’†‘º‰À˜NF@‹É’´‰¹‘¬ÕŒ‚”gŠ±Â—¬‚ê‚É‚¨‚¯‚é‹ó—͉Á”M‚Ì”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.56 (2008)CNo.653, pp.269-277Ddoi:10.2322/jjsass.56.269 JOI:JST.JSTAGE/jjsass/56.269 ‘æ21‰ñi•½¬23”N“xjq‹ó‰F’ˆŠw‰ï§—ãÜŽóÜ
  71. –k‘ºŒ\ˆêC¬àVŒ[ŽfC‰ÔˆäŸËCX_ˆêC’†‘º‰À˜NF@‹É’´‰¹‘¬TSTO‚É‚¨‚¯‚éÕŒ‚”gŠ±ÂE‹«ŠE‘w”—£‚𔺂¤—¬‚êê‚̉ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.56 (2008)CNo.653, pp.278-285Ddoi:10.2322/jjsass.56.278 JOI:JST.JSTAGE/jjsass/56.278
  72. Nishikawa, H. and Kitamura, K.: Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers, Journal of Computational Physics, Vol.227, No.4, 2008, pp.2560-2581. doi:10.1016/j.jcp.2007.11.003
  73. Murakami, K., Kitamura, K., Hashimoto, A., Aoyama, T. and Nakamura, Y.: Research on Acoustic Environment during Rocket Launch, Theoretical and Applied Mechanics Japan, Vol.56, 2008, pp.463-469. JOI:JST.JSTAGE/nctam/56.463
  74. –k‘ºŒ\ˆêCX_ˆêC‰ÔˆäŸËC–î‹´–±C¬àVŒ[ŽfC’†‘º‰À˜NF@TSTOƒI[ƒrƒ^Œ`ó‚Ì’´‰¹‘¬‹ó—ÍŠ±Â—¬‚êê‚ւ̉e‹¿C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.55 (2007)CNo.646, pp.509-515Ddoi:10.2322/jjsass.55.509 JOI:JST.JSTAGE/jjsass/55.509
  75. ¼–ì“Ö—mCÎ쑸ŽjC–k‘ºŒ\ˆêC’†‘º‰À˜NF@‹É’´‰¹‘¬TSTO‹ó—ÍŠ±Â—¬‚êê‚É‚¨‚¯‚é2•¨‘ÌŠÔŠu‚Ì‹ó—͉Á”M—¦‚ւ̉e‹¿C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.53 (2005), No.622, pp.503-509Ddoi:10.2322/jjsass.53.503 JOI:JST.JSTAGE/jjsass/53.503

    (*) Corresponding Author
ŽóÜE•\²
  1. ‘æ56‰ñŽs‘ºÜ@Žs‘ºŠwpÜivŒ£Üjw¢ŠE•W€—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†‚Æ‘ŽYƒƒPƒbƒgŠJ”­‚Ö‚ÌvŒ£xC–k‘ºŒ\ˆê, 2024.
  2. —ߘa4”N“x@‰¡•l‘—§‘åŠw—DGŒ¤‹†ŽÒÜ@—DGŒ¤‹†ÜC –k‘ºŒ\ˆê, 2023.
  3. —ߘa4”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ‰ÈŠw‹ZpÜiŒ¤‹†•”–åjC “ˆ‰pŽuC–k‘ºŒ\ˆê@CwƒƒPƒbƒg‚âŽÔ‚ÌŠJ”­‚ð—eˆÕ‚É‚µ‚½¢ŠE•W€—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†x, 2022.
  4. ‘æ30‰ñi—ߘa2”N“xj“ú–{q‹ó‰F’ˆŠw‰ï ‹ZpÜEŠî‘b‹Zp•”–åC “ˆ‰pŽuC–k‘ºŒ\ˆê@Cw‘S‘¬“x—¬‘ÌŒvŽZƒXƒL[ƒ€SLAU‚ÌŠJ”­x, 2021.
  5. “ú–{‹@ŠBŠw‰ï@‰F’ˆHŠw•”–å@‘æ97Šúi2019”N“xjˆê”Ê•\²ƒXƒy[ƒXƒtƒƒ“ƒeƒBƒACuÄŽg—p‚•p“x‰F’ˆ—A‘—ƒVƒXƒeƒ€v‹ó—ÍŒ¤‹†ƒ`[ƒ€ i‘ã•\F–k‘ºŒ\ˆêC–ì’†‘jC2020.
  6. “ú–{‹@ŠBŠw‰ï@—¬‘ÌHŠw•”–å@‘æ97Šúi2019”N“xjƒtƒƒ“ƒeƒBƒA•\²C –k‘ºŒ\ˆê, 2019.
  7. •½¬31”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ŽáŽè‰ÈŠwŽÒÜC –k‘ºŒ\ˆê@w‘ŽYƒƒPƒbƒgŠJ”­‚ÉŽ‘‚·‚éˆÀ’è‚ųŠm‚È—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†x, 2019.
  8. •½¬30”N“x@‰¡•l‘—§‘åŠw—DGŒ¤‹†ŽÒÜ@§—ãÜC –k‘ºŒ\ˆê, 2019.
  9. “ú–{—¬‘Ì—ÍŠw‰ï 2017”N“xŠw‰ïÜ —³–åÜC –k‘ºŒ\ˆê@wÕŒ‚”g‚É‚¨‚¢‚ĈÀ’è‚©‚‚¸“x‚È—¬‘ÌŒvŽZŽè–@‚Ì’ñˆÄx, 2018.
  10. ‘æ10‰ñ‰F’ˆ‰ÈŠw§—ãÜi‰F’ˆHŠw•ª–ìjC –k‘ºŒ\ˆê@wÕŒ‚”g‚ðˆÀ’è‚ɂƂ炦‚é—¬‘ÌŒvŽZ–@‚Ì’ñˆÄ‚Æ‚»‚ê‚ð—p‚¢‚½ƒCƒvƒVƒƒ“ƒƒPƒbƒg‚Ì‹ó—Í“Á«‚̉ð–¾x, 2018.
  11. ‘æ21‰ñi•½¬23”N“xj“ú–{q‹ó‰F’ˆŠw‰ï§—ãÜC –k‘ºŒ\ˆê@iŠÖ˜A˜_•¶F@w‹É’´‰¹‘¬ÕŒ‚”gŠ±Â—¬‚ê‚É‚¨‚¯‚é‹ó—͉Á”M‚Ì”’l‰ðÍxj, 2012.
Žw“±Šw¶‚ÌŽóÜ
  1. 2024”N03ŒŽ25“úFŒÃàVC—ߘa5”N“x—HŠw•{ ŠwˆÊ‹LŽö—^Ž®‚É‚ÄŠw¶•\²
  2. 2024”N03ŒŽ25“úF“ñ‘ºC—ߘa5”N“x—HŠw•{ ŠwˆÊ‹LŽö—^Ž®‚É‚ÄŠw¶•\²
  3. 2023”N11ŒŽ16“ú: —é–ØC‘æ61‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€‚É‚ÄŠw¶—DGu‰‰Ü‚ðŽóÜ
  4. 2023”N06ŒŽ09“ú: ŒÃàVCThe 34th ISTS (International Symposium on Space Technology and Science)‚É‚Ä Japanese Rocket Society Award‚ðŽóÜ
  5. 2022”N06ŒŽ: ŒÃàVC2022 AIAA Aviation Forum and Exposition‚É‚ÄAIAA Computational Fluid Dynamics Best Student Paper Competition 2nd Place‚ðŽóÜ
  6. 2022”N06ŒŽ: •Ÿ“ˆC2022 AIAA Aviation Forum and Exposition‚É‚ÄAIAA Computational Fluid Dynamics Best Student Paper Competition 1st Place‚ðŽóÜ
  7. 2022”N03ŒŽ24“úF“›ˆäC—ߘa3”N“x—HŠw•{‹@ŠBHŠwƒ†ƒjƒbƒgŠwˆÊ‹LŽö—^Ž®‚É‚Ä“ú–{‹@ŠBŠw‰ïŽO‰YÜ‚ðŽóÜ
  8. 2022”N03ŒŽ24“úFŠÔX‰ºC—ߘa3”N“x—HŠw•{‹@ŠBHŠwƒ†ƒjƒbƒgŠwˆÊ‹LŽö—^Ž®‚É‚Ä•\²
  9. 2021”N03ŒŽ25“úFŽRŒûC—HŠw•”’·•\²
  10. 2021”N02ŒŽ28“úFŽRŒûC‘æ10‰ñƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒiƒIƒ“ƒ‰ƒCƒ“j‚É‚ÄŽQ‰ÁŠé‹ÆÜiƒtƒ@[ƒEƒFƒCÜj‚ðŽóÜ
  11. 2020”N12ŒŽ10“úF“›ˆäC‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  12. 2020”N03ŒŽ24“úFûü–ØC—ߘaŒ³”N“x—HŠw•{‹@ŠBHŠwƒ†ƒjƒbƒgŠwˆÊ‹LŽö—^Ž®‚É‚Ä“ú–{‹@ŠBŠw‰ïŽO‰YÜ‚ðŽóÜ
  13. 2019”N11ŒŽ07“úFûü–ØC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  14. 2019”N07ŒŽ15“úF“¡–{C32nd International Symposium on Shock Waves (ISSW32)‚É‚ÄStudent Competition Award‚ðŽóÜ
  15. 2019”N03ŒŽ26“úF“¡–{C•½¬30”N“x—HŠw•”’·•\²
  16. 2019”N03ŒŽ26“úF‰Í“àC•½¬30”N“xHŠw•{‹@ŠBƒVƒXƒeƒ€HŠwƒR[ƒXŠwˆÊ‹LŽö—^Ž®‚É‚Ä•\²
  17. 2018”N08ŒŽ27“úF“¡–{C‘æ50‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ36‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€i—ªÌF—¬—ÍANSSj‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  18. 2018”N08ŒŽ19“úF‰Í“àCJSSUME2018‚É‚ÄExcellent Presentation Award‚ðŽóÜ
  19. 2018”N07ŒŽ12“úFûü–ØC15th International Space Conference of Pacific-basin Societies (ISCOPS)—Montreal, Canada‚É‚ÄŒ¤‹†”­•\‚ðs‚¢CThe first prize in the Masters category‚ðŽóÜ
  20. 2018”N04ŒŽ20“úF‰Í“àC“ú–{q‹ó‰F’ˆŠw‰ï‘æ49Šú”N‰ïu‰‰‰ï‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  21. 2018”N03ŒŽ04“úF“¡–{CuƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒEƒRƒ“ƒ\[ƒVƒAƒ€§—ãÜ@ƒOƒbƒhƒpƒtƒH[ƒ}ƒ“ƒXÜv‚ðŽóÜ
ƒƒ“ƒo[‚Æ‚µ‚Ä‚ÌŽóÜ
  1. “ú–{HŠw‹³ˆç‹¦‰ï@‘æ24‰ñi2019”N“xjHŠw‹³ˆçÜi•¶•”‰ÈŠw‘åbÜj Cuo‚éY‚ðL‚΂·Šw•”‹³ˆçƒvƒƒOƒ‰ƒ€ROUTEiResearch Opportunities for UndergraduaTEsj‚ÌŽÀ‘HvC‰¡•l‘—§‘åŠw—HŠw•”i‘ã•\F•Ÿ“c~“ñjC2020.
  2. “ú–{‹@ŠBŠw‰ï@2019”N“x@“ú–{‹@ŠBŠw‰ï‹³ˆçÜ CuŠw•”‚P”N¶‚©‚çÅæ’[Œ¤‹†‚ÉŽQ‰Á‚Å‚«‚éROUTEkResearch Opportunities for UndergraduaTEslƒvƒƒWƒFƒNƒg‚ÌŽÀ‘HvC‰¡•l‘—§‘åŠwE‹@ŠBHŠw‹³ˆç ƒvƒƒOƒ‰ƒ€i‘ã•\FŠÛ”öº“ñjC2020.
µ‘Òu‰‰EƒZƒ~ƒi[EƒAƒEƒgƒŠ[ƒ`Šˆ“®iŽÐ‰ï‚Ö‚ÌvŒ£j
  1. "Development of All-Speed Numerical Flux, Shock-Detector, and their possible combination with Turbulence Modeling," Seminar at DLR, Cologne, Germanyi2024”N02ŒŽ22“új.
  2. "Development and Prospects of All-Speed Numerical Flux "SLAU2" in Finite Volume Method," Seminar at School of Metallurgy and Materials, University of Birmingham & Onlinei2023”N11ŒŽ17“új.
  3. TVŽæÞio‰‰jF@u’T‹‚ÌŠK’ivC2022”N02ŒŽ10“úC19“úCƒeƒŒƒr“Œ‹ž^BSƒeƒŒ“ŒD
  4. gˆ³k«—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†‚Æ‘ŽYƒƒPƒbƒgŠJ”­‚ւ̉ž—pCh “ú–{‹@ŠBŠw‰ï@2021”N“x”NŽŸ‘å‰ï@“Á•ÊsŽ–Šé‰æuæ’[‹ZpƒtƒH[ƒ‰ƒ€vF19100 ‰F’ˆHŠw•ª–ì‚É‚¨‚¯‚é”’l‰ðÍ‹Zp‚Ì“WŠJm‰F’ˆHŠw•”–åCŒvŽZ—ÍŠw•”–åŠé‰æn[F191-03] iƒIƒ“ƒ‰ƒCƒ“C2021”N09ŒŽ07“új
  5. g—LŒÀ‘ÌÏ–@‚É‚¨‚¯‚éÃŽ~ÕŒ‚”g‚¨‚æ‚шړ®ÕŒ‚”g•ßŠl‚ÌŒ»ó‚ƉۑèCh “ú–{‹@ŠBŠw‰ï@RC286u—¬‚ê‚Ìæi“IŒv‘ªEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“–@‚Æ—¬‘Ìî•ñ‚Ì‚“x—˜—p‚ÉŠÖ‚·‚錤‹†•ª‰È‰ïviƒIƒ“ƒ‰ƒCƒ“C2021”N08ŒŽ31“új
  6. hÕŒ‚”g‚ðˆÀ’è‚©‚‚¸“x‚ɉð‚­V‚µ‚¢”’l‰ð–@huSTEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“Œ¤‹†‰ïEKDKƒVƒ“ƒ|ƒWƒEƒ€ ‡“¯Œ¤‹†‰ïv@µ‘Òu‰‰iƒIƒ“ƒ‰ƒCƒ“C2021”N03ŒŽ31“új
  7. gˆ³k«—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†‚ƃ‚ƒm‚­‚è‚Ö‚ÌvŒ£ChŒö‰vŽÐ’c–@l Ž©“®ŽÔ‹Zp‰ï@CFD‹Zp•”–åˆÏˆõ‰ïuu‰‰viƒIƒ“ƒ‰ƒCƒ“C2021”N01ŒŽ08“új
  8. Š”Ž®‰ïŽÐƒ‰ƒCƒZƒ“ƒXƒAƒJƒfƒ~[wŒn“E•ª–ì•Êî•ñŽ 5. —EHŠwAŠÂ‹«Aî•ñA’ÊMA‹@ŠBAŽ©“®ŽÔAŒš’zA”_ŠwAƒoƒCƒIƒeƒNƒmƒƒW[i¶–½HŠwŠÖ˜Aj •Ò xiŽæÞ‹LŽ–ŒfÚji2021”Nj
  9. g‹ó”ò‚ÔƒNƒ‹ƒ}‚ÌŽÀŒ»‚ÉŒü‚¯‚½‹ó—ÍÝŒv‚QCh u‘æ141‰ñFPS“Á•ÊŒ¤C‰ïviƒIƒ“ƒ‰ƒCƒ“C2020”N11ŒŽ30“új
  10. ‚Ý‚ç‚¢‚Ô‚Á‚­i‰Í‡mE“àŠt•{‚È‚Çj‚É‚²Ð‰î‚¢‚½‚¾‚«‚Ü‚µ‚½iWeb‹LŽ–ŒfÚjD i2020”N9ŒŽj
  11. TVŽæÞF@uƒX[ƒp[Jƒ`ƒƒƒ“ƒlƒ‹vC”—£‰Q‚ÉŠÖ‚·‚é‰ðà“à—e‚ªÐ‰î‚³‚ê‚Ü‚µ‚½D2020”N07ŒŽ15“úCƒeƒŒƒr’©“úD
  12. TVŽæÞio‰‰jF@uVEî•ñ7daysƒjƒ…[ƒXƒLƒƒƒXƒ^[vCŽÔ‘ÌŒã•û‚Ì”—£‰Q‚ɂ‚¢‚ĉðàC2020”N07ŒŽ11“úCTBSDiTBSuNƒXƒ^vC2020”N07ŒŽ13“úC‚É‚¨‚¢‚Ä‚à‰ðà‰f‘œ‚ªÄ“xŽg—p‚³‚ê‚Ü‚µ‚½Dj
  13. —ߘaŒ³”N“x‰ÈŠwŒ¤‹†”Ž–‹Æi‰ÈŠwŒ¤‹†”ï•â•‹àjiŒ¤‹†¬‰ÊŒöŠJ‘£i”ïjuŒ¤‹†¬‰ÊŒöŠJ”­•\i‚aji‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚Ö`‚j‚`‚j‚d‚m‚g‚hjvg”òãÄ‘Ìi‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚É‚Í`hi‰¡•l‘—§‘åŠwC2019”N8ŒŽ8“új
  14. –²ƒiƒrTALKu‹ó‹C‚Ì—Í‚Å‹ó‚ÖC‰F’ˆ‚ÖIviƒ|[ƒgƒƒbƒZ‚È‚²‚âC–¼ŒÃ‰®ŽsC2019”N7ŒŽ20“új
  15. Top ResearchersiWeb‹LŽ–ŒfÚj i2019”N7ŒŽj
  16. TVŽæÞio‰‰jF@NHK@uƒjƒ…[ƒXƒEƒHƒbƒ`9vCwu‹ó”ò‚ÔƒNƒ‹ƒ}vŽÀ—p‰»‚Ö ‰^qƒ‹[ƒ‹‚â‹ZpŠJ”­‚È‚Ç‹c˜_xC2018”N8ŒŽ29“úCNHKD
  17. “ú–{ŠwpU‹»‰ïu¬E’†E‚Z¶‚Ì‚½‚߂̃vƒƒOƒ‰ƒ€@‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚Ö`KAKENHIiŒ¤‹†¬‰Ê‚̎ЉïŠÒŒ³E•‹yŽ–‹Æjvg”òãÄ‘Ìi‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚É‚Í`hi‰¡•l‘—§‘åŠwC2018”N8ŒŽ24“új
  18. gÅVƒƒPƒbƒg‚Æ‹ó‹C—ÍŠwCh uƒƒNƒgƒTƒCƒGƒ“ƒXƒŒƒNƒ`ƒƒ[vi‘½–€˜Z“s‰ÈŠwŠÙC¼“Œ‹žŽsC2018”N06ŒŽ02“új
  19. gÅVƒƒPƒbƒg‚Ì‹ó‹C—ÍŠwŒ¤‹†Ch ‰¡•l‘—§‘åŠw@–¼‹³A”ü‰ïu‘æ29‰ñƒuƒ‰ƒbƒVƒ…ƒAƒbƒvŒ¤C‰ïvi‚©‚È‚ª‚í˜J“­ƒvƒ‰ƒUC‰¡•lŽsC2018”N01ŒŽ27“új
  20. g”òãÄ‘Ì‚Ì‚Ó‚µ‚¬Ch _“Þ쌧—§Œõ—Ë‚“™ŠwZ@o’£u‹`uKoryo@Science@Cafe‡Uvi_“Þ쌧—§Œõ—Ë‚“™ŠwZC‰¡•lŽsC2017”N12ŒŽ25“új
  21. "Hypersonic Flow and Multiphase Flow Computations by Finite Volume Method," FlowPAC Seminar (University of Notre Dame, 2017”N09ŒŽ15“új
  22. "SLAU2 and Post Limiter for (Unlimited) Second-Order Flow Simulations on Unstructured Grids," 92nd NIA CFD SeminariNational Institute of Aerospace, 2017”N08ŒŽ18“új
  23. "Recent Progress and Future Prospects of Two-Fluid AUSM in Multiphase Flow Simulations," EMN (Energy Materials Nanotechnology) Meeting On Droplets 2016, San Sebastian, Spain, May 9-13, 2016.
  24. gÕŒ‚”gˆÙí‰ð‚̈ꎟŒ³«‚Æ‘½ŽŸŒ³«‚ɂ‚¢‚ÄCh@JAXAŒ¤‹†ŠJ”­–{•”@‘æ1‰ñJNƒZƒ~ƒi[ iJAXAŒ¤‹†ŠJ”­–{•”C“Œ‹ž“s’²•zŽsC2013”N02ŒŽjD
  25. gÕŒ‚”g•s˜A‘±–Ê‚Ì”’l“I•ß‘¨‚ƈÙí‰ð‚ɂ‚¢‚ÄCh@—‰»ŠwŒ¤‹†Š@ACCC‘Š‡ƒ`[ƒ€u—Œ¤ƒZƒ~ƒi[v i—‰»ŠwŒ¤‹†Š “Œ‹ž˜A—Ž––±ŠC“Œ‹ž“sç‘ã“c‹æC2013”N01ŒŽjD
  26. gƒJ[ƒoƒ“ƒNƒ‹Œ»Û‚ɂ‚¢‚ÄCh ÕŒ‚”g•sˆÀ’è«Œ¤‹†‰ï i“Œ–k‘åŠw—tŽRƒLƒƒƒ“ƒpƒXCå‘äŽs—t‹æC2011”N09ŒŽjD
  27. g”’l—¬‘Ì—ÍŠw(CFD)‚ÌŒ¤‹†‚ƉF’ˆ‹@ŠJ”­‚ւ̉ž—pCh “Œ‹ž‘åŠw‘åŠw‰@@”—‰ÈŠwŒ¤‹†‰È^î•ñ—HŠwŒnŒ¤‹†‰È u”’l‰ð̓Zƒ~ƒi[v#21 i“Œ‹ž‘åŠw‹îêƒLƒƒƒ“ƒpƒXC–Ú•‹æ‹îêC2011”N06ŒŽjD
  28. gq‹ó‰F’ˆCFD‚É‚¨‚¯‚é”’l—¬‘©ŠÖ”‚ÌŒ¤‹†‚ƉF’ˆ‹@‹ó—͉ðÍCh –¾Ž¡‘åŠwæ’[”—‰ÈŠwƒCƒ“ƒXƒeƒBƒeƒ…[ƒg@‘æ8‰ñŒ»Û”—ŽáŽèƒVƒ“ƒ|ƒWƒEƒ€ uq‹ó‹@‚Ì”—@|—¬‘̃‚ƒfƒ‹‚Æ”’l‰ðÍ|vi–¾Ž¡‘åŠw¶“cƒLƒƒƒ“ƒpƒXCìèŽs‘½–€‹æC2011”N1ŒŽjD
  29. ŽGŽŽæÞiƒCƒ“ƒ^ƒrƒ…[j‹LŽ–ŒfÚF@‚¨ŽdŽ–Œ©•·˜^Cw‘ˆî“cƒAƒJƒfƒ~[’ñŒg@’†ŠwŽóŒ±@ƒTƒNƒZƒX12 2011”N3E4ŒŽ†xCpp.14-16, ŽÐ‰ï•]˜_ŽÐD
‹ß”N‚Ì‘ÛŠw‰ï”­•\
  1. Kitamura, K., Tsukamoto, Y., Wang, Z.-N., Moller, F.M., and Tucker, P.G.: Effects of LES/RANS hybrid interface location on oscillating shockwave in transonic buffeting flow, Cambridge Unsteady Flow Symposium (CUFS), Murray Edwards College, Cambridge, UK, 4-5 March, 2024.
  2. › Fukushima, G., and Kitamura, K.: MUSCL and THINC hybrid scheme for strong and very weak shock waves in steady and unsteady flows, J15.00007, 76th Annual Meeting of the Division of Fluid Dynamics, American Physical Society, Washington, DC, November 19-21, 2023.
  3. › Furusawa, Y., Kitamura, K., Ikami, T., Okawa, M., and Nagai, H.: Compressibility Effects around Propeller on Propeller-Wing g Aerodynamic Interaction for Mars Airplane, GS1-19, The 20th International Conference on Flow Dynamics (ICFD2023), Sendai, Japan, November 06-08, 2023.
  4. › Tsukamoto, Y., and Kitamura, K.: Numerical Study on a Supercritical Airfoil: Interactions of Vortex Generator-Induced Wake and Shock Waves, OS21-60, The 20th International Conference on Flow Dynamics (ICFD2023), Sendai, Japan, November 06-08, 2023.
  5. › Fukushima, G., Kitamura, K., and Sasoh, A.: Improvement of Very Weak Shock Capturing Using Hybrid MUSCL-THINC, T11-0373, The 34th International Symposium on Shock Waves (ISSW34), Daegu, Korea, July 16-21, 2023.
  6. › Kawai, K., and Kitamura, K.: Computational fluid analysis on multiple flat plates as small distributed aerodynamic brake for high-speed railways, 2-08-2-04, ASME-JSME-KSME Fluids Engineering Division 2023 (AJKFED2023), Osaka, Japan, July 11, 2023.
  7. › Mamashita, T., Tamai, R., Muto, T., Kitamura, K., and Nonaka, S.: Numerical Analysis and Wind Tunnel Testing of Experimental Reusable Vehicle RV-X Aerodynamics at 90‹ Angle-of-Attack, 2023-g-19, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  8. › Furusawa, Y., Kitamura, K., Ikami, T., Okawa, M., and Nagai, H.: Propeller Scale Effect on Fixed Wing within Propeller Slipstream at Low Reynolds Number, 2023-e-42, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  9. › Suzuki, K., Mamashita, T., Furusawa, Y., and Kitamura, K.: Grid Resolution Study on Numerical Analysis of Propeller-Wing Interaction, 2023-e-38, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  10. › Tsukamoto, Y., and Kitamura, K.: Comparison of Leading Edge VGs on SC(2)-0518 and OAT15A Airfoils for Transonic Buffet Suppression, 2023-e-36, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  11. › Nimura, K., Tsutsui, F., Kitamura, K., and Nonaka, S.: Aerodynamic Effects of Surface Protuberance Sizes on Slender-Bodied Supersonic Vehicle, AIAA 2023-0241, AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online. https://arc.aiaa.org/doi/10.2514/6.2023-0241
  12. › Tsukamoto, Y., and Kitamura, K.: Improvements of Vortex Generator for Transonic Buffet Suppression over Supercritical Airfoil, OS21-24, 19th International Conference on Flow Dynamics (ICFD2022), Sendai, Japan & Online, Nov-10-2022.
  13. › Furusawa, Y., Kitamura, K., Ikami, T., Okawa, M., and Nagai, H.: Numerical Study on Propeller Scale Effect on Flow Field around Blade, OS21-31, 19th International Conference on Flow Dynamics (ICFD2022), Sendai, Japan & Online, Nov-10-2022.
  14. Kitamura, K., Furusawa, Y., Ikami, T., Okawa, M., Fujita, K., and Nagai, H.: Propeller-Slipstream/Main-Wing Aerodynamic Interaction for Mars Airplane, Part II, CRF-47, 19th International Conference on Flow Dynamics (ICFD2022), Sendai, Japan & Online, Nov-10-2022.
  15. › Nakahara, K., Kitamura, K., and Nonaka, S.: Numerical Study on L/D Improvement of Slender Body by Close-Coupled-Delta-Wing-Type Aerodynamic Devices, S14-1, The 2022 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2022), Niigata, Japan & Virtual, Oct-12-2022.
  16. Kitamura, K., Yasumura, Y., Furusawa, Y., Kanamori, M., and Hashimoto, A.: Time-Interval Study on NASA-CRM Low-Speed Unsteady Flow Computation, S42-1, The 2022 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2022), Niigata, Japan & Virtual, Oct-13-2022.
  17. › Mamashita, T., and Kitamura, K.: Application of A Posteriori Slope Limiter to Ideal Magnetohydrodynamics Simulation, No. 2117 in MS0729 Advances in High-Order Methods for Computational Fluid Dynamics, WCCM-APCOM YOKOHAMA 2022, Virtual, Aug. 2022.
  18. › Furusawa, Y., and Kitamura, K.: Roles of Multi-Dimensional Velocity Components in All-Speed Numerical Flux SLAU, AIAA 2022-4033, AIAA AVIATION 2022 Forum, June 27-July 1, 2022, Chicago, IL & Virtual. https://doi.org/10.2514/6.2022-4033 [AIAA Computational Fluid Dynamics Best Student Paper Competition 2nd Place]
  19. › Fukushima, G., Kitamura, K., and Sasoh, A.: On Peculiar Behaviors of Captured Very-Weak Moving Shockwaves, AIAA 2022-4127, AIAA AVIATION 2022 Forum, June 27-July 1, 2022, Chicago, IL & Virtual. https://doi.org/10.2514/6.2022-4127 [AIAA Computational Fluid Dynamics Best Student Paper Competition 1st Place]
  20. › Aono, J., Kitamura, K., and Shimizu, T.: NUMERICAL STUDY ON AIRBORNE DROPLETS USING TWO-FLUID MODELLED MULTIPHASE FLOW SIMULATIONS, ICJWSF2022-I07, The 7th International Conference on Jets, Wakes and Separated Flows 2022, Full On-line, March 15-17, 2022.
  21. › Mamashita, T., Muto, T., Kitamura, K., and Nonaka, S.: Numerical Analysis on Axial Force Characteristics of Reusable Launch Vehicle during Return Phase, 2022-g-01, 33rd International Symposium on Space Technology and Science (ISTS), all-online, Feb-26 - Mar-04, 2022.
  22. › Tsutsui, F., Kitamura, K., and Nonaka, S.: Effects of RANS Turbulence Models on Aerodynamics of Slender-Bodied Launch Vehicles with Protuberance, P00155, 12th Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Jeju, South Korea & Virtual, Nov-15-2021.
  23. Kitamura, K., Furusawa, Y., Ikami, T., Fujita, K., and Nagai, H.: Propeller-Slipstream/Main-Wing Aerodynamic Interaction for Mars Airplane, CRF-34, 18th International Conference on Flow Dynamics (ICFD2021), Online, Oct-29-2021.
  24. › Furusawa, Y., Kitamura, K., and Nagai, H.: Numerical Study on Mach Number Effects of Propeller on Propeller-Wing Interaction, OS20-1, 18th International Conference on Flow Dynamics (ICFD2021), Online, Oct-27-2021.
  25. › Mamashita, T., Kitamura, K., and Minoshima, T.: SLAU2-MHD for Low Mach Magnetohydrodynamics (MHD) Simulations, AIAA 2021-2730, AIAA AVIATION 2021 FORUM, August 2-6, 2021, VIRTUAL EVENT. https://doi.org/10.2514/6.2021-2730
  26. › Tsutsui, F., Takagi, Y., Takimoto, H., Kitamura, K., and Nonaka, S.: Numerical Analysis on Aerodynamic Characteristics of Slender Body with Asymmetric Double Protuberance, AIAA-2021-0137, AIAA SciTech Forum 2021, Virtual Event, Jan. 2021.
  27. › Furusawa, Y., Kitamura, K., Nagai, H., and Oyama, A.: Numerical Investigation on Three-Dimensional Flow Structure over Fixed Wing within Propeller Slipstream, OS18-31, Seventeenth International Conference on Flow Dynamics (ICFD2020), Online, Oct. 2020.
  28. › Furusawa, Y., and Kitamura, K.: Unsteady Numerical Simulation on Angle-of-Attack Effects of Tractor-Propeller/Wing and Pusher-Propeller/Wing Interactions, AIAA 2020-1030, AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020.
  29. › Akamine, M., Yamauchi, S., Nonaka, S., Takagi, Y., Takimoto, H., and Kitamura, K.: Tomographic Reconstruction from Schlieren Images of Slender Body with Asymmetric Protuberances, AIAA 2020-0028, AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020.
  30. Kitamura, K., Ogawa, S., Takimoto, H., Kanamori, M., and Hashimoto, A.: Low Speed Buffet Simulation using High-Resolution Delayed-DES with Improved LES/RANS Transition, Asia Pacific International Symposium on Aerospace Technology (APISAT) 2019, Surfers Paradise Marriott Resort, Gold Coast, Australia, 4-6 December 2019.
  31. › Aono, J. and Kitamura, K.: Numerical Investigation of AUSM-family Schemes Dissipation for Compressible Multiphase Flow Simulations, (OR-09-0367), 32nd International Symposium on Shock Waves (ISSW32), National University of Singapore, Singapore, July 18, 2019.
  32. Kitamura, K. and Shima, E.: Numerical Survey on Shock Anomalies from Moving Shocks, (OR-11-0253), 32nd International Symposium on Shock Waves (ISSW32), National University of Singapore, Singapore, July 17, 2019.
  33. › Fujimoto, T. and Kitamura, K.: Efficient and Accurate Shock Sensor for CFD Solutions on Curvilinear Grids, (OR-11-0307), 32nd International Symposium on Shock Waves (ISSW32), National University of Singapore, Singapore, July 15, 2019.
  34. › Ogawa, S. and Kitamura, K.: Improvement of the Aerodynamic Characteristics of Wing by Moving Surface Method at Low Reynolds Number, 2019-e-48, 32nd International Symposium on Space Technology and Science (ISTS), Fukui, Japan, Jun. 15-21, 2019.

    ¦@›‚Í”­•\ŽÒD
‹ß”N‚Ì‘“àŠw‰ïEŒ¤‹†‰ï”­•\
  1. Z —é–Ø Œb‘¾Câ’Ü vÆCŒÃàV ‘PŽCŒ´ —D‰ÔC–k‘ºŒ\ˆê(‰¡‘‘å)F@FaSTAR-Move‚ð—p‚¢‚½eVTOL‚Ì‹ó—ÍŠ±Â‚Ì”’l‰ðÍC“ú–{ƒwƒŠƒRƒvƒ^‹¦‰ï 2023”N“x«—ˆ‰ñ“]—ƒ‹@Œ¤‹†‰ï^‰ñ“]—ƒ‰ðÍ‹ZpŒð—¬‰ïi“d—Í’†‰›Œ¤‹†ŠC“Œ‹žC2024”N03ŒŽ22“új
  2. Z •Ÿ“ˆ Šx, –k‘ºŒ\ˆê(‰¡‘‘å)F‹­‚¢ÕŒ‚”gE”÷ŽãÕŒ‚”g‚ð“K؂ɉð‚­MUSCL-THINCƒnƒCƒuƒŠƒbƒh‰ð–@C‘æ37‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€C3401-04-04i–¼ŒÃ‰®‘åŠwC–¼ŒÃ‰®ŽsC2023”N12ŒŽ17“újD
  3. Z “ñ‘º ˜aŽ÷, ’‡Œ´ GÆ, •õ“ˆ q–î, ŒFˆä ‹¿Šó, –k‘º Œ\ˆê(‰¡‘‘å), –ì’† ‘iJAXA)F@ƒ}ƒbƒn0.7‹y‚Ñ1.3‚É‚¨‚¯‚郊ƒ“ƒOŒ^Œ`ó“Ë‹N‚É‚æ‚é×’·•¨‘̂ւ̉¡—͒ጸŒø‰ÊA—ߘa5”N“x ‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€AISAS2023-SFMA-038i‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2023”N12ŒŽ12“újD
  4. Z â’Ü vÆ, –k‘ºŒ\ˆê(‰¡‘‘å), ¼‘º —û, ˆÉ_ —ƒ, ‰iˆä ‘åŽ÷(“Œ–k‘å)F“¯Ž²”½“]ƒ[ƒ^‚Ì’á Re ”‹ó—ÍU“®‚Ì”’l‰ðÍC‘æ61‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1F08i–k‹ãB‘Û‰ï‹cêC•Ÿ‰ªŒ§–k‹ãBŽsC2023”N11ŒŽ15“ú`17“új
  5. Z —é–Ø Œb‘¾, –k‘ºŒ\ˆê(‰¡‘‘å)F@eVTOL‚̃vƒƒyƒ‰ŠÔ‹——£‚ª“·‘ÌEŒÅ’è—ƒ‹ó—Í“Á«‚É‹y‚Ú‚·‰e‹¿‚Ì”’l‰ðÍC‘æ61‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1F09i–k‹ãB‘Û‰ï‹cêC•Ÿ‰ªŒ§–k‹ãBŽsC2023”N11ŒŽ15“ú`17“új
  6. Z ’Ë–{ —I‘¾, –k‘ºŒ\ˆê(‰¡‘‘å)F@’´—ÕŠE—ƒ–Êã‚É‚¨‚¯‚éÕŒ‚”g‚Æ Vortex Generator Œã—¬‰Q‚Æ‚ÌŠ±Â‚ÉŠÖ‚·‚é”’lŒvŽZC‘æ61‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C2F04i–k‹ãB‘Û‰ï‹cêC•Ÿ‰ªŒ§–k‹ãBŽsC2023”N11ŒŽ15“ú`17“új
  7. › Œ´ —D‰Ô, ŠÔX‰º’qL, –k‘ºŒ\ˆê(‰¡‘‘å) C‹Êˆä—º‘½i“Œ‘åjC–ì’† ‘iJAXAjFÄŽg—pƒƒPƒbƒg“]‰ñŽž‚ð–Í‹[‚µ‚½Œ}Šp0‹`180‹‚Ì“®“I‹ó—͉ðÍC‘æ67‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP002i•xŽR‘Û‰ï‹cêEANAƒNƒ‰ƒEƒ“ƒzƒeƒ‹•xŽRC•xŽRŽsC2023”N10ŒŽ19“újD
  8. › “ñ‘º˜aŽ÷C –k‘ºŒ\ˆê(‰¡‘‘å) C–ì’†‘iJAXAjFƒŠƒ“ƒOŒ^Œ`ó“Ë‹N‚É‚æ‚é×’·•¨‘̂ւ̉¡—͒ጸŒø‰ÊC‘æ67‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP085i•xŽR‘Û‰ï‹cêEANAƒNƒ‰ƒEƒ“ƒzƒeƒ‹•xŽRC•xŽRŽsC2023”N10ŒŽ19“újD
  9. › •Ÿ“ˆ Šx, –k‘ºŒ\ˆê(‰¡‘‘å) ,gA posterioriŒù”z§ŒÀŽè–@uƒ|ƒXƒgƒŠƒ~ƒ^v‚ÆŠE–ʕߊl–@THINC‚ð‘g‚݇‚킹‚½˜A‘±E•s˜A‘±—¬‚ê‚ð‚‰ð‘œ‚·‚éMUSCLƒ^ƒCƒv‚̉ð–@hC‘æ55‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ41‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjCJSASS-2023-2028-A-1D02i‘—§ƒIƒŠƒ“ƒsƒbƒN‹L”O­”N‘‡ƒZƒ“ƒ^[C “Œ‹ž“sa’J‹æC2023”N07ŒŽ12“újD
  10. › –ì~–çC–k‘ºŒ\ˆêi‰¡‘‘åjCg…’†‚É‚¨‚¯‚é‘ȉ~Œ^‹C–A‚Æ‚’¼ÕŒ‚”gŠ±Â‚Ì”’lŒvŽZCh(ˆêŽÐ) ‰Î–òŠw‰ï 2023”N“xt‹GŒ¤‹†”­•\‰ïCSession 1-1i‹@ŠBU‹»‰ïŠÙC“Œ‹ž“s`‹æC2023”N04ŒŽ18“újD
  11. –k‘ºŒ\ˆêi‰¡‘‘åjCg‰æ‘œˆ—‚ð‰ž—p‚µ‚½‘½ŽŸŒ³ÕŒ‚”gŒŸ’mŒ^ CFD Žè–@‚ÌŒŸ“¢i‘æ2•ñF§ŒÀŠÖ”jCh(ˆêŽÐ) ‰Î–òŠw‰ï 2023”N“xt‹GŒ¤‹†”­•\‰ïCSession 6-19i‹@ŠBU‹»‰ïŠÙC“Œ‹ž“s`‹æC2023”N04ŒŽ18“újD
  12. › ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å)Cg’჌ƒCƒmƒ‹ƒY”(4,900 … Re … 50,000)‚Ì—ƒŒ^Žü‚è—¬‚ê‚É‚¨‚¯‚é——¬‘JˆÚƒ‚ƒfƒ‹‚Ì«”\”äŠrCh“ú–{q‹ó‰F’ˆŠw‰ï ‘æ54Šú ”N‰ïu‰‰‰ïC1D07i“ú–{‰ÈŠw–¢—ˆŠÙC“Œ‹ž“s]“Œ‹æC2023”N04ŒŽ13“újD
  13. › •Ÿ“ˆ Šx(–¼‘å) , –k‘ºŒ\ˆê(‰¡‘‘å) , ²@ ÍO(–¼‘å)CgƒnƒCƒuƒŠƒbƒhMUSCL-THINC–@‚É‚æ‚鈳k«—¬‘ÌŒvŽZ«”\‚ÌŒüãCh2022”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C1A1-2iŽY‹Æ‹Zp‘‡Œ¤‹†ŠC‚‚­‚ÎŽsC2023”N03ŒŽ08“újD
  14. › •Ÿ“ˆ Šx(–¼‘å) , –k‘ºŒ\ˆê(‰¡‘‘å) , ²@ ÍO(–¼‘å)Cg”÷ŽãÕŒ‚”g‚ðƒVƒƒ[ƒv‚É‘¨‚¦‚éƒnƒCƒuƒŠƒbƒhMUSCL-THINC–@Ch‘æ36‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB09-2iƒIƒ“ƒ‰ƒCƒ“C2022”N12ŒŽ16“újD
  15. › ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å)Cgˆ³k«‘S‘¬“xƒXƒL[ƒ€‚É‚¨‚¯‚鑽ŽŸŒ³‘¬“x¬•ª‚ÌŒvŽZˆÀ’諂ւ̉e‹¿i‘æ2•ñjF‚æ‚èL”͂ȃ}ƒbƒn”ˆæ‚Å‚Ì’²¸Ch‘æ36‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB09-4iƒIƒ“ƒ‰ƒCƒ“C2022”N12ŒŽ16“újD
  16. Z –{–Ø ãÄŒáC“ñ‘º ˜aŽ÷CáÁ•¿ FŠîC–k‘º Œ\ˆêi‰¡‘‘åjC–ì’† ‘iJAXAjCg“Ë‹N‚Ì‘å‚«‚³‚É‚æ‚é×’·•¨‘̉¡—Í“Á«‚ւ̉e‹¿‚ɂ‚¢‚Ä‚Ì‘J‰¹‘¬•—“´ŽŽŒ±Ch—ߘa4”N“x ‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, ISAS2022-SFMA-037i‘Š–ÍŒ´ŽsC‰F’ˆ‰ÈŠwŒ¤‹†ŠC2022”N12ŒŽ13“újD
  17. Z áÁ•¿FŠîC–k‘ºŒ\ˆêi‰¡‘‘åjCgƒLƒƒƒmƒs[Œ`ó‚̈قȂ钴‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg“àŠOˆ³—Í•Ï“®‚Ì”’l—¬‘̉ðÍ Ch P093C‘æ66‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïiŒF–{ŽsC2022”N11ŒŽ02“új
  18. Z ŠÔX‰º ’qL(‰¡‘‘å), ‹Êˆä —º‘½, •“¡ ’q‘¾˜N(“Œ‘å), –k‘º Œ\ˆê(‰¡‘‘å), –ì’† ‘(JAXA)CgÄŽg—pƒƒPƒbƒgŽÀŒ±‹@RV-X‚ÌŒ}Šp90“x‚É‚¨‚¯‚éŽÀ”òsƒXƒP[ƒ‹”’l‰ðÍCh‘æ66‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïiŒF–{ŽsC2022”N11ŒŽ01“új
  19. Z ŠÔX‰º ’qLC–k‘ºŒ\ˆê (‰¡‘‘å)Cga posterioriŒù”z§ŒÀŽè–@uƒ|ƒXƒgƒŠƒ~ƒ^v‚ÌŽ¥‹C—¬‘Ì—ÍŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Ö‚Ì“K—pCh“ú–{—¬‘Ì—ÍŠw‰ï@”N‰ï2022i‹ž“s‘åŠwC‹ž“sŽsC2022”N09ŒŽ28“újD
  20. › “ñ‘º ˜aŽ÷, –k‘º Œ\ˆê, “›ˆä Žj–ç (‰¡‘‘å), –ì’† ‘ (JAXA)Cg×’·•¨‘Ì•\–Ê“Ë‹N‚Ì‘å‚«‚³‚ª’´‰¹‘¬ˆæ‚ʼn¡—Í“Á«‚É‹y‚Ú‚·‰e‹¿‚Ì”’l‰ðÍCh‘æ54‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ40‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1C03iƒAƒC[ƒiF‚¢‚í‚ÄŒ§–¯î•ñŒð—¬ƒZƒ“ƒ^[C·‰ªŽsC2022”N06ŒŽ29“újD
  21. › ’‡Œ´ GÆ, –k‘º Œ\ˆêi‰¡‘‘åj, –ì’† ‘ (JAXA)CgƒNƒ[ƒXEƒJƒbƒvƒ‹ƒhEƒfƒ‹ƒ^—ƒŒ^‹ó—̓fƒoƒCƒX‚É‚æ‚é×’·•¨‘Ì‚Ì—gR”äŒüãCh‘æ54‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ40‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1C05iƒAƒC[ƒiF‚¢‚í‚ÄŒ§–¯î•ñŒð—¬ƒZƒ“ƒ^[C·‰ªŽsC2022”N06ŒŽ29“újD
  22. Z áÁ•¿FŠîC–k‘ºŒ\ˆêi‰¡‘‘åjCg„‘Ì DGB Œ^’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚É‚¨‚¯‚éƒLƒƒƒmƒs[“àŠOˆ³—Í•Ï“®‚Ì”’l—¬‘̉ðÍ Ch 3A1-3C2021”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2022”N03ŒŽ11“új
  23. Z –k‘ºŒ\ˆêi‰¡‘‘åjCg‰æ‘œˆ—‚ð‰ž—p‚µ‚½‘½ŽŸŒ³ÕŒ‚”gŒŸ’mŒ^ CFD Žè–@‚ÌŒŸ“¢Ch 2B2-2C2021”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2022”N03ŒŽ10“új
  24. › “›ˆäŽj–çC–{–ØãÄŒáCˆÀ‘º—SÆC –k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†@‘iJAXAjCg”ñ‘ÎÌ‚É”z’u‚³‚ꂽ•¡”“Ë‹N‚ð—L‚·‚é×’·•¨‘Ì‚Ì‘J‰¹‘¬•—“´ŽŽŒ±Ch—ߘa‚R”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2021”N12ŒŽ20“újD
  25. › •Ÿ“ˆ Šx(–¼‘å) , –k‘ºŒ\ˆê(‰¡‘‘å) , ²@ ÍO(–¼‘å)CgŽã‚¢ˆÚ“®ÕŒ‚”g‚̕ߊl‚É‚¨‚¯‚é”’l“I‰Û‘èCh‘æ35‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB03-1iƒIƒ“ƒ‰ƒCƒ“C2021”N12ŒŽ14“újD
  26. › ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å)Cgˆ³k«‘S‘¬“xƒXƒL[ƒ€‚É‚¨‚¯‚鑽ŽŸŒ³‘¬“x¬•ª‚ÌŒvŽZˆÀ’諂ւ̉e‹¿FSLAU‚ÆmSLAU‚Ì”äŠrCh‘æ35‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB04-3iƒIƒ“ƒ‰ƒCƒ“C2021”N12ŒŽ14“újD
  27. Z ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å), ‰iˆä ‘åŽ÷(“Œ–k‘å)Cgƒvƒƒyƒ‰EŒÅ’è—ƒ‹ó—ÍŠ±Â‚É‚¨‚¢‚ăvƒƒyƒ‰‚Ì—ƒ’[ƒ}ƒbƒn”•Ï‰»‚ª—^‚¦‚é‰e‹¿‚Ì”’l‰ðÍCh‘æ59‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1B03iƒIƒ“ƒ‰ƒCƒ“C2021”N11ŒŽ30“újD
  28. › ˆÀ‘º —SÆ, –k‘ºŒ\ˆê(‰¡‘‘å‰@)CgŠJŽP‰Šú‚ð–Í‹[‚µ‚½’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚Ì‹ó—ÍŒvŽZFƒMƒƒƒbƒv‚¨‚æ‚уJƒvƒZƒ‹‹——£‚̉e‹¿Ch“ú–{‹@ŠBŠw‰ï@2021”N“x”NŽŸ‘å‰ïCS191 ‘å‹C“Ë“üEŒ¸‘¬‹Zp@[S191-01]iƒIƒ“ƒ‰ƒCƒ“C2021”N09ŒŽ07“újD
  29. › –{–Ø ãÄŒá, “›ˆä Žj–ç, 쓇 —E“l, –k‘ºŒ\ˆê (‰¡‘‘å‰@), –ì’† ‘ (JAXA)Cg“Ë‹N‚ð—L‚·‚é×’·•¨‘Ì‚Ì‘J‰¹‘¬ˆæ‚É‚¨‚¯‚鉡—Í“Á«Ch‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1D05iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  30. › ŠÔX‰º ’qL (‰¡‘‘å), •“¡ ’q‘¾˜N(“Œ‘å), –k‘ºŒ\ˆê(‰¡‘‘å), –ì’† ‘(JAXA)Cgƒ_ƒuƒ‹ƒR[ƒ“Œ^ÄŽg—pƒƒPƒbƒg‚ÌŽÀ‹@ƒXƒP[ƒ‹”’l‰ðÍ‚É‚æ‚鎲—Í“Á«‚Ì—\‘ªCh‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1D06iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  31. › “›ˆä Žj–ç, –k‘ºŒ\ˆê(‰¡‘‘å), –ì’† ‘(JAXA)Cg“Ë‹N‚ð—L‚·‚é×’·•¨‘Ì‚Ì‹ó—͉ðÍ‚É‚¨‚¯‚é——¬ƒ‚ƒfƒ‹‚̉e‹¿Ch‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1A11iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  32. › ˆÀ‘º —SÆ, –k‘ºŒ\ˆê, ŒÃàV ‘PŽ (‰¡‘‘å), ‹àX ³Žj, ‹´–{ “Ö (JAXA)CgNASA CRM’ᑬƒoƒtƒFƒbƒg‚Ì”ñ’èí—¬‘̉ðÍ‚É‚¨‚¯‚é——¬ƒ‚ƒfƒ‹‚Æ”’l—¬‘©ŠÖ”‚Ì”äŠrCh‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1A20iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  33. Z Šxû»MC“¡–{„ŽjC–k‘ºŒ\ˆêi‰¡‘‘åjCóˆäGŽ÷C‹v•Û“cË–îC–¾Š¯ŠwCŽsŒ´‘å•ãC²@ÍOi–¼‘åj C gÕŒ‚”g‚ƃoƒuƒ‹‚ÌŠ±Â‚É‚æ‚趬‚³‚ꂽ‰Q—Ö‹““®‚Ì”’l‰ðÍCh2020”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2021”N03ŒŽ04“új
  34. Z 쓇@—E“l, “›ˆä@Žj–ç, –{–Ø@ãÄŒá, –k‘ºŒ\ˆê(‰¡‘‘å), –ì’†@‘(JAXA) Cg”ñ‘ÎÌ“Ë‹N•t‚«×’·•¨‘Ì‚Ì‘J‰¹‘¬•—“´ŽŽŒ±Ch—ߘa‚Q”N“x@‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2020”N12ŒŽ14“újD
  35. Z ŒÃàV ‘PŽ,–k‘ºŒ\ˆê(‰¡‘‘å),‰iˆä ‘åŽ÷(“Œ–k‘å),‘åŽR ¹(JAXA)Cg’჌ƒCƒmƒ‹ƒY”‚Ńvƒƒyƒ‰Œã—¬‚ªŒÅ’è—ƒ‚Ì‘w—¬”—£–A‚É—^‚¦‚é‰e‹¿‚Ì”’l‰ðÍCh‘æ58‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1D09iƒIƒ“ƒ‰ƒCƒ“C2020”N11ŒŽ25“újD
  36. Z 쓇 —E“l,–k‘ºŒ\ˆê(‰¡‘‘å),–ì’† ‘(JAXA)Cg‘J‰¹‘¬•—“´ŽŽŒ±‚¨‚æ‚ÑCFDŒ‹‰Ê‚ð—˜—p‚µ‚½’ïR’l•â³`ƒx[ƒXˆ³‘ª’èˆÊ’u‚̉e‹¿`Ch‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï,2L05iƒIƒ“ƒ‰ƒCƒ“C2020”N10ŒŽ28“újD
  37. Z “›ˆä Žj–ç,ûü–Ø —YÆ,‘ë–{ _”V,–k‘ºŒ\ˆê(‰¡‘‘å),–ì’† ‘(JAXA)Cg”ñ‘ÎÌ‚É”z’u‚³‚ꂽ2‚‚̓ˋN‚ð—L‚·‚é×’·•¨‘Ì‚Ì‹ó—͉ðÍCh‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï,2L06iƒIƒ“ƒ‰ƒCƒ“C2020”N10ŒŽ28“újD
  38. Z ŒÃàV ‘PŽ,–k‘ºŒ\ˆê(‰¡‘‘å),‰iˆä ‘åŽ÷(“Œ–k‘å),‘åŽR ¹(JAXA)Cgis—¦‚ªˆÙ‚È‚éꇂ̃vƒƒyƒ‰Œã—¬‚ªŒÅ’è—ƒ‚É—^‚¦‚é‰e‹¿‚̕ω»‚ÉŠÖ‚·‚é”’l‰ðÍCh‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï,1D06iƒIƒ“ƒ‰ƒCƒ“C2020”N10ŒŽ27“újD
  39. Z–k‘ºŒ\ˆêC ˆÀ‘º —SÆ(‰¡‘‘å)C ‹àX ³ŽjC ‹´–{ “Ö(JAXA)CgNASA CRM’ᑬƒoƒtƒFƒbƒg‚Ì”ñ’èí—¬‘̉ðÍ‚É‚¨‚¯‚éŒvŽZŽè–@‚̉e‹¿‚Æ¡Œã‚Ì“W–]Ch—¬‘Ì—ÍŠwu‰‰‰ï^q‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€2020ƒIƒ“ƒ‰ƒCƒ“C1A11iƒIƒ“ƒ‰ƒCƒ“C2020”N09ŒŽ28“újD
  40. Z ŠÔX‰º ’qLC–k‘ºŒ\ˆê (‰¡‘‘å)CâÀ“‡ Œh (JAMSTEC)Cg’áƒ}ƒbƒn”ˆæ‚ÌŽ¥‹C—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½SLAU2-MHDCh“ú–{—¬‘Ì—ÍŠw‰ï@”N‰ï2020iƒIƒ“ƒ‰ƒCƒ“C2020”N09ŒŽ20“újD
  41. Z óˆäGŽ÷C‹v•Û“cË–î(–¼‘å)C–¾Š¯Šw(’†•”“d—Í)CŽsŒ´‘å•ãC²@ÍO(–¼‘å)CŠxû»MC“¡–{„ŽjC–k‘ºŒ\ˆêi‰¡‘‘åjCgƒŒ[ƒU[‰Á”Mƒoƒuƒ‹‚Æ‚’¼ÕŒ‚”g‚É‚æ‚趬‚³‚ꂽ‰Q—Ö—ñ‚Ì‹““®Ch2019”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C1C3-3i_ŒË‘åŠwC_ŒËŽsC2020”N03ŒŽ04“újD
  42. › 쓇—E“lC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’† ‘(JAXA)Cg×’·•¨‘Ì‚Ì‘J‰¹‘¬•—“´ŽŽŒ±‚É‚¨‚¯‚éƒx[ƒXR—͂̕ⳕû–@ŒŸ“¢ Ch—ߘaŒ³”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iJAXA‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2019”N12ŒŽ09“újD
  43. ‘ë–{_”VC› ‚–Ø—YÆC“›ˆäŽj–çC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Ch”ñ‘ÎÌE•¡”“Ë‹N‚ð—L‚·‚é×’·•¨‘̉¡—Í“Á«‚ÌŽÀŒ±hC—ߘaŒ³”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iJAXA‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2019”N12ŒŽ09“újD
  44. › ŒÃàV‘PŽC–k‘ºŒ\ˆê(‰¡‘‘å)ChŒ}Šp‚ð•Ï‰»‚³‚¹‚½Û‚̃vƒƒyƒ‰^ŒÅ’è—ƒ‹ó—ÍŠ±Â‚Ì“Á«’²¸‚ÉŠÖ‚·‚é”’l‰ðÍhC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïC3B07iƒAƒXƒeƒB‚Æ‚­‚µ‚ÜC“¿“‡ŽsC2019”N11ŒŽ08“újD
  45. › ‚–Ø—YÆC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Chƒtƒ‰ƒbƒvŠp‚̈قȂéƒ{ƒ‹ƒeƒbƒNƒXEƒtƒ‰ƒbƒv‚ð—p‚¢‚½ÄŽg—pƒƒPƒbƒg‚Ì‘åŒ}Šp‚É‚¨‚¯‚éDDES‰ðÍhC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP71iƒAƒXƒeƒB‚Æ‚­‚µ‚ÜC“¿“‡ŽsC2019”N11ŒŽ07“újD
  46. › ‚–Ø—YÆi‰¡‘‘åjC•“¡ ’q‘¾˜Ni“Œ‘åj,–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Chƒ_ƒuƒ‹ƒR[ƒ“Œ^ÄŽg—pƒƒPƒbƒg‚Ì‘åŒ}Šp‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì•—“´ŽŽŒ±‚Æ”’l‰ðÍhC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïC1H04iƒAƒXƒeƒB‚Æ‚­‚µ‚ÜC“¿“‡ŽsC2019”N11ŒŽ06“újD
  47. › ’·’J®‰›–çC–k‘ºŒ\ˆê(‰¡‘‘å)ChƒTƒCƒhƒWƒFƒbƒg‹ó—ÍŠ±Â—¬‚ê‚É‚¨‚¯‚é‹É’´‰¹‘¬‹ó—͉Á”MŒvŽZhC“ú–{—¬‘Ì—ÍŠw‰ï ”N‰ï2019i“d‹C’ÊM‘åŠwC2019”N9ŒŽ14“újD
  48. › Ô—ä­mCŽR“à ’qŽjC–ì’† ‘(JAXA)Cûü–Ø —YÆC‘ë–{ _”VC–k‘ºŒ\ˆê(‰¡‘‘å)Ch”ñ‘ÎÌ“Ë‹N•t‚«×’·•¨‘̂̃Vƒ…ƒŠ[ƒŒƒ“‰ÂŽ‹‰»‰æ‘œ‚©‚ç’f‘wÄ\¬hC“ú–{—¬‘Ì—ÍŠw‰ï ”N‰ï2019i“d‹C’ÊM‘åŠwC2019”N9ŒŽ13“újD
  49. –k‘ºŒ\ˆêC¬ì—DC‘ë–{_”Vi‰¡‘‘åjC‹àX³ŽjC‹´–{“ÖiJAXAjCg‚‰ð‘œ“xDDES‚É‚æ‚é’ᑬƒoƒtƒFƒbƒg‰ðÍCh‘æ51‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ37‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€(ANSS)C2E02i‘ˆî“c‘åŠw ‘ˆî“cƒLƒƒƒ“ƒpƒX ‘Û‰ï‹cêCVh‹æC2019”N7ŒŽ3“újD
  50. › ‚–Ø—YÆC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Chƒ{ƒ‹ƒeƒbƒNƒXEƒtƒ‰ƒbƒv‚ð—p‚¢‚½ÄŽg—pƒƒPƒbƒg‚Ì‘åŒ}Šp‹ó—Í“Á«‚ÉŠÖ‚·‚éDDES‰ðÍhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-01i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  51. › 쓇—E“lC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)ChÄŽg—pŒ^ƒƒPƒbƒg‚Ì‘J‰¹‘¬”òsŽž‚É‚¨‚¯‚é‹ó—͉ðÍhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-02i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  52. › ŒÃàV‘PŽC–k‘ºŒ\ˆê(‰¡‘‘å)ChŒÅ’è—ƒ‘O•û‚Ƀvƒƒyƒ‰‚ð—L‚·‚éꇂ̌Œ藃/ƒvƒƒyƒ‰‹ó—ÍŠ±Â‚Ì”’l‰ðÍhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-05i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  53. › ¬ì —DC–k‘ºŒ\ˆê(‰¡‘‘å)Ch•\–ʈړ®–@‚ð—p‚¢‚½ŽOŽŸŒ³—ƒ‚̒჌ƒCƒmƒ‹ƒY”‹ó—Í“Á«‚ÌŒüãhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-14i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  54. › –ì~–çC–k‘ºŒ\ˆêi‰¡‘‘åjCgˆ³k«‚Q—¬‘̃‚ƒfƒ‹‚É‚¨‚¯‚éAUSM-familyƒXƒL[ƒ€‚ÌŽUˆí—Ê‚Ì”’l“IŒŸ“¢Ch•½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C2D1-1i‰¡•l‘—§‘åŠwC‰¡•lŽsC2019”N3ŒŽ6“újD
  55. › “¡–{„ŽjC–k‘ºŒ\ˆêi‰¡‘‘åjCg\‘¢ŠiŽq‚É‚¨‚¯‚é’áƒRƒXƒg‚©‚‚¸“x‚ÈÕŒ‚”gŒŸ’m–@‚ÌŠJ”­Ch•½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C2D1-4i‰¡•l‘—§‘åŠwC‰¡•lŽsC2019”N3ŒŽ6“újD
  56. › ”ª–ØÀ‘åãÄC–k‘ºŒ\ˆêi‰¡‘‘åjCg’´‰¹‘¬”òsŽž‚É‚¨‚¯‚é”òãđ̃vƒ‹[ƒ€Š±Â‚Ì”’l‰ðÍCh•½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C1A3-4i‰¡•l‘—§‘åŠwC‰¡•lŽsC2019”N3ŒŽ5“újD
  57. Z ‰Í“à˜aŠÏCŒ´“c•q–¾C–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjg”ñ‘ÎÌ“Ë‹N‚ð—L‚·‚é×’·•¨‘̉¡—Í“Á«‚ÌŽÀŒ±E”’l‰ðÍhC•½¬30”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iJAXA‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2018”N12ŒŽ10“újD
  58. Z •Ÿ–{Š¬‘¾C–k‘ºŒ\ˆêi‰¡‘‘åjCX_ˆêi–¼‘åjg’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg“àŠO‚É‚¨‚¯‚é—¬‘Ì•Ï“®‚Ì”’l‰ðÍCh‘æ62‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïC3L03i‹v—¯•ÄƒVƒeƒBƒvƒ‰ƒUC‹v—¯•ÄŽsC2018”N10ŒŽ26“újD
  59. Z ‚–Ø—YÆCŠ`‘ñ–çC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjgƒtƒBƒ“•t‚«ÄŽg—pƒƒPƒbƒg‚É‚¨‚¯‚éƒsƒbƒ`ƒ“ƒOƒ‚[ƒƒ“ƒg“Á«‚Ì”’l‰ðÍCh‘æ62‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP01i‹v—¯•ÄƒVƒeƒBƒvƒ‰ƒUC‹v—¯•ÄŽsC2018”N10ŒŽ25“újD
  60. Z Œ´“c•q–¾C‰Í“à˜aŠÏC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjg”ñ‘ÎÌ“Ë‹N•¨‚ð—L‚·‚é×’·”òãđ̂̉¡—Í“Á«‚ÉŠÖ‚·‚é”’l‰ðÍCh‘æ62‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP83i‹v—¯•ÄƒVƒeƒBƒvƒ‰ƒUC‹v—¯•ÄŽsC2018”N10ŒŽ25“újD
  61. › ûü–Ø—YÆCŠ`‘ñ–çC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjgƒ{ƒ‹ƒeƒbƒNƒXEƒtƒ‰ƒbƒv‚ð—p‚¢‚½ƒtƒBƒ“•t‚«ÄŽg—pƒƒPƒbƒg‚̃sƒbƒ`ƒ“ƒOƒ‚[ƒƒ“ƒg“Á«Ch‘æ50‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ36‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€(ANSS)C2C09i‹{èŽs–¯ƒvƒ‰ƒUC‹{èŽsC2018”N7ŒŽ5“újD
  62. › “¡–{„ŽjC‰Í葾˜YC–k‘ºŒ\ˆêi‰¡‘‘åjCg‰æ‘œˆ—–@‚Ì“±“ü‚É‚æ‚é’áƒRƒXƒg‚Å–â‘èˆË‘¶«‚Ì‚È‚¢ÕŒ‚”gŒŸ’m–@‚ÌŠJ”­Ch‘æ50‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ36‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€(ANSS)C1B09i‹{èŽs–¯ƒvƒ‰ƒUC‹{èŽsC2018”N7ŒŽ4“újD
  63. › •Ÿ–{Š¬‘¾C–k‘ºŒ\ˆêi‰¡‘‘åjCX_ˆêC‘q“c–¸‘¾i–¼‘åjCh’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg„‘Ì–ÍŒ^‚ÌBandŽxŽ\‘¢‚É‚æ‚é•\–Ê‹y‚ÑŽüˆÍ—¬‚êê‚ւ̉e‹¿Ch“ú–{q‹ó‰F’ˆŠw‰ï@‘æ49Šú”N‰ïu‰‰‰ïC2B06i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2018”N4ŒŽ20“újD
  64. › ‰Í“à˜aŠÏCŒ´“c•q–¾C–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjCh”ñ‘ÎÌ“Ë‹N•¨‚ð—L‚·‚é×’·•¨‘Ì‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì’´‰¹‘¬•—“´ŽŽŒ±Ch“ú–{q‹ó‰F’ˆŠw‰ï@‘æ49Šú”N‰ïu‰‰‰ïC1B09i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2018”N4ŒŽ19“újDŠw¶—DG”­•\ÜŽóÜ

    ¦@›‚Í”­•\ŽÒD
Žw“±Šw¶‚Ì‚Ý‚É‚æ‚éŠw‰ï”­•\
  1. › —é–ØŒb‘¾i‰¡‘‘åjCgeVTOL‚̃[ƒ^ˆÊ’u‚ª‹@‘Ì‹ó—Í“Á«‚É‹y‚Ú‚·‰e‹¿‚Ì”’l‰ðÍCh‘æ60‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1D15iVŠƒŽsC2022”N10ŒŽ11“újD
  2. › ’Ë–{—I‘¾i‰¡‘‘åjCgƒX[ƒp[ƒNƒŠƒeƒBƒJƒ‹—ƒ‚É‚¨‚¯‚é Vortex GeneratorE—ƒ‹«ŠE‘wŠ±Â‚Ì”’l“I’²¸Ch‘æ60‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1D01iVŠƒŽsC2022”N10ŒŽ11“újD
  3. › —é–ØŒb‘¾i‰¡‘‘åjCŽ©“®ŽÔ‹Zp‰ï@2022”Nt‹G‘å‰ï@Šw¶ƒ|ƒXƒ^[ƒZƒbƒVƒ‡ƒ“iƒpƒVƒtƒBƒR‰¡•lC‰¡•lŽs{ƒIƒ“ƒ‰ƒCƒ“C2022”N05ŒŽ27“újD
  4. Z ŽRŒû‘ñ^i‰¡‘‘åjCg‚‚¢‹ó—Í«”\‚ð—L‚·‚é“·‘ÌŒ`ó‚Æ‚ÍIH@`‹ó”ò‚ÔƒNƒ‹ƒ}‚â’´‰¹‘¬—·‹q‹@‚ÌŽÀŒ»‚ÉŒü‚¯‚Ä`Ch‘æ10‰ñƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒCƒtƒ@ƒCƒiƒŠƒXƒgŒû“ª”­•\iƒIƒ“ƒ‰ƒCƒ“C2021”N01ŒŽ25“újDuŽQ‰ÁŠé‹ÆÜiƒtƒ@[ƒEƒFƒCÜjv
  5. › ¬ì—Di‰¡‘‘åjCg•\–ʈړ®–@‚ð—p‚¢‚½’჌ƒCƒmƒ‹ƒY”C‚ƒ}ƒbƒn”‚É‚¨‚¯‚é“ñŽŸŒ³—ƒ‹ó—Í“Á«‚ÌŒüãCh‘æ56‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C2C01iŽRŒ`ƒeƒ‹ƒTCŽRŒ`ŽsC2018”N11ŒŽ15“újD
  6. › ‘ë–{_”Vi‰¡‘‘åjCgVortex Generator‚É‚æ‚é‘J‰¹‘¬ƒoƒtƒFƒbƒg—}§‚Ì”’l“IŒ¤‹†Ch‘æ56‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C2C02iŽRŒ`ƒeƒ‹ƒTCŽRŒ`ŽsC2018”N11ŒŽ15“újD
  7. Z “¡–{„Žji‰¡‘‘åjCgŒ©‚¦‚È‚¢ÕŒ‚”g‚𑨂¦‚ëI`—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚¨‚¯‚éÕŒ‚”gŒŸ’m–@‚ÌŠJ”­`Ch‘æ7‰ñƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒC”­•\”Ô†17i—§‹³‘åŠwC“Œ‹ž“s–L“‡‹æC2018”N03ŒŽ04“újDuƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒEƒRƒ“ƒ\[ƒVƒAƒ€§—ãÜ@ƒOƒbƒhƒpƒtƒH[ƒ}ƒ“ƒXÜv
‹LŽ–E‹ZpŽ‘—¿E•ñ‘
  1. –k‘ºŒ\ˆêF@ƒOƒ‹[ƒvЉî@‰¡•l‘—§‘åŠw‹ó‹C—ÍŠwŒ¤‹†ŽºCExplosionCVol.33, No.3 (2023), pp.185-187.
  2. –k‘ºŒ\ˆêF@‹ó”ò‚ÔƒNƒ‹ƒ}‚ðŽæ‚芪‚­ŠÂ‹«‚Æ‚»‚ÌŽÀŒ»‚ÉŒü‚¯‚½Œ¤‹†ŠJ”­C‚‘¬“¹˜H‚ÆŽ©“®ŽÔCVol. 65 (2022), No. 4, p.7.
  3. –k‘ºŒ\ˆêF@ ‰¡•l‘—§‘åŠw‹ó‹C—ÍŠwŒ¤‹†Žº‚É‚¨‚¯‚é‰ÂŽ‹‰»Ž–—áFÕŒ‚”g‚ƉQC‰ÂŽ‹‰»î•ñŠw‰ïŽCVol.41 (2021), No.162, pp.15-16Dhttps://doi.org/10.3154/jvs.41.162_15
  4. “ˆ‰pŽuC–k‘ºŒ\ˆêF@‘S‘¬“x—¬‘ÌŒvŽZƒXƒL[ƒ€SLAU‚ÌŠJ”­C“ú–{q‹ó‰F’ˆŠw‰ïŽCVol.69 (2021), No.12, pp.337-340DDOIF10.14822/kjsass.69.12_337
  5. –k‘ºŒ\ˆêF@ÕŒ‚”g‚É‚¨‚¢‚ĈÀ’è‚©‚‚¸“x‚È—¬‘ÌŒvŽZŽè–@‚Ì’ñˆÄi—³–åÜŽóÜ‹L”O‰ðàjC‚È‚ª‚êCVol.37 (2018), No.3, pp.221-228D
  6. –k‘ºŒ\ˆêF@ƒOƒ[ƒoƒ‹AEROiŠCŠO‹ó—Í‹@ŠÖ–K–âE‘Ø݃Œƒ|[ƒgj‘æ13‰ñ@NASA Glenn Research CenterC“ú–{q‹ó‰F’ˆŠw‰ïŽCVol.61 (2013), No.12, pp.414-415D
  7. Šâ‰i‘¥éC‹à“c‰p˜aC‘ºãŒjˆêC‹´–{“ÖC–k‘ºŒ\ˆêCÂŽR„ŽjC’†‘º‰À˜NF@ƒƒPƒbƒg‘Å‚¿ã‚°Žž‚̉¹‹¿ŠÂ‹«‚ð•]‰¿‚·‚éEuler/LEEƒR[ƒh@‘æ2•ñ@LEE ƒIƒvƒVƒ‡ƒ“CJAXA-RM-08-009 (2009)D
  8. ‹à“c‰p˜aCŠâ‰i‘¥éC‘ºãŒjˆêC‹´–{“ÖC–k‘ºŒ\ˆêCÂŽR„ŽjC’†‘º‰À˜NF@ƒƒPƒbƒg‘Å‚¿ã‚°Žž‚̉¹‹¿ŠÂ‹«‚ð•]‰¿‚·‚éEuler/LEEƒR[ƒh@‘æ1•ñ@EulerƒIƒvƒVƒ‡ƒ“CJAXA-RM-07-015 (2008)D
  9. ‘ºãŒjˆêC‚‹´ FC–k‘ºŒ\ˆêC‹´–{ “ÖCÂŽR„ŽjC’†‘º‰À˜NF@”’l‰ðÍ‚É‚æ‚郃Pƒbƒg‘Åã‚°Žž‚̉¹‹¿U“®‚ÉŠÖ‚·‚錤‹†C‰ÂŽ‹‰»î•ñCVol.27 (2007), No.2, pp.163-164D
Œ¤‹†Ž‘‹àŠl“¾ó‹µ
  1. Œö‰và’c–@l JKA Œ¤‹†•â•Cw‹ó”ò‚ÔƒNƒ‹ƒ}‚̒ᑬ‚¨‚æ‚Ñ‚‘¬”òsŽž‚Ì”ñ’èí‹ó—Í“Á«Žæ“¾x•â•Ž–‹Æi2024”N4ŒŽ`2025”N3ŒŽjC‘ã•\D
  2. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠî”ÕŒ¤‹†iBjvw‰ð‘œ“x‚TŽŸ¸“x’´‚ÌŒø—¦“I‚È2ŽŸ¸“xŒ^ˆ³k«—¬‘ÌŒvŽZ–@‚Æ•¡ŽG—¬‘Ì•¨—‚ւ̉ž—pxi2023”N4ŒŽ`2026”N3ŒŽjC‘ã•\D
  3. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠwp•ÏŠv—̈挤‹†iAjiŒö•åŒ¤‹†jvw“Á’¥–ÊŒŸoE‰ð‘œ“xŒüã‚ðŽ©“®‚Å‘ŠŒÝ‚És‚¤AIÏ‹É—Z‡Œ^‚ÌV‚µ‚¢”’l—¬‘Ì—ÍŠwxi2023”N4ŒŽ`2025”N3ŒŽjC‘ã•\D
  4. “Œ–k‘åŠw—¬‘̉ȊwŒ¤‹†Š—ߘa‚T”N“xŒö•å‹¤“¯Œ¤‹†w‰Î¯”òs‹@‚É‚¨‚¯‚éƒvƒƒyƒ‰Œã—¬EŽå—ƒŠ±Â—¬‚ê‚̉ð–¾xiŒp‘±3”N–Úji2023”N4ŒŽ`2024”N3ŒŽjC‹¤“¯‘ã•\i‰iˆä‘åŽ÷C–k‘ºŒ\ˆêjD
  5. Œö‰và’c–@l ‰Î–òH‹Æ‹Zp§—ã‰ï@2022”N“xŒ¤‹†•¬w”š”­C”šŒ‚̸–§ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½ˆÚ“®ÕŒ‚”g‚Ì”’lŒvŽZ–@Šm—§i‚»‚Ì‚Qjxi2022”N6ŒŽjC‘ã•\D
  6. “Œ–k‘åŠw—¬‘̉ȊwŒ¤‹†Š—ߘa‚S”N“xŒö•å‹¤“¯Œ¤‹†w‰Î¯”òs‹@‚É‚¨‚¯‚éƒvƒƒyƒ‰Œã—¬EŽå—ƒŠ±Â—¬‚ê‚̉ð–¾xiŒp‘±2”N–Úji2022”N4ŒŽ`2023”N3ŒŽjC‹¤“¯‘ã•\i‰iˆä‘åŽ÷C–k‘ºŒ\ˆêjD
  7. ‰ÈŠwŒ¤‹†”ï•â•‹àu‘Û‹¤“¯Œ¤‹†‹­‰»iAjvw‰æ‘œˆ—‚Æ—¬‘Ì—ÍŠw‚Ì—Z‡‚É‚æ‚éÕŒ‚”gŒŸ’m‚Æ‚¸“xŽÀ—p——¬ŒvŽZxi2022”N3ŒŽ`2025”N3ŒŽjC‘ã•\D
  8. ‘—§Œ¤‹†ŠJ”­–@l VƒGƒlƒ‹ƒM[EŽY‹Æ‹Zp‘‡ŠJ”­‹@\iNEDOjuŠ¯–¯‚É‚æ‚éŽáŽèŒ¤‹†ŽÒ”­Œ@Žx‰‡Ž–‹Æ^ƒ}ƒbƒ`ƒ“ƒOƒTƒ|[ƒgƒtƒF[ƒYvw‹ó”ò‚ÔƒNƒ‹ƒ}‚Ì‹ó—ÍÝŒvDX‚ÆŽÀ‹@”òsxi2022”N3ŒŽ`2023”N2ŒŽjC‘ã•\D
  9. Œö‰và’c–@l Z—Fà’c@Šî‘b‰ÈŠwŒ¤‹†•¬wCOVID-19”ò–—Š´õ—\‘ª‚ÉŒü‚¯‚½‹ó‹C’†‚ð•Y‚¤ŒÅ‘Ì—±Žq‚̬‘Š—¬ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“xiŒp‘±ji2021”N11ŒŽjC‘ã•\D
  10. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠî”ÕŒ¤‹†iAjvw‘O•û—¬‘¬ênudge‚É‚æ‚éÕŒ‚”g•Ï’²`”g–ÊÁŽ¸Œ´—ŽÀ؂Ɖž—p“WŠJxi2021”N4ŒŽ`2025”N3ŒŽjC•ª’Si‘ã•\F²@ ÍOjD
  11. JAXAw’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†i‚»‚Ì‚Qjxi2021”N7ŒŽ`2022”N2ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  12. Œö‰và’c–@l ‰Î–òH‹Æ‹Zp§—ã‰ï@2021”N“xŒ¤‹†•¬w”š”­C”šŒ‚̸–§ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½ˆÚ“®ÕŒ‚”g‚Ì”’lŒvŽZ–@Šm—§xi2021”N6ŒŽjC‘ã•\D
  13. Œö‰và’c–@l ‰¡•lH‹Æ‰ï Œ¤‹†•¬w‰t‘Ì•¨—‚É’‰ŽÀ‚ȃVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚é”ò–—EƒGƒAƒƒ]ƒ‹‹““®—\‘ªxi2021”N6ŒŽ`2022”N3ŒŽjC‘ã•\D
  14. “Œ–k‘åŠw—¬‘̉ȊwŒ¤‹†Š—ߘa‚R”N“xŒö•å‹¤“¯Œ¤‹†w‰Î¯”òs‹@‚É‚¨‚¯‚éƒvƒƒyƒ‰Œã—¬EŽå—ƒŠ±Â—¬‚ê‚̉ð–¾xi2021”N4ŒŽ`2022”N3ŒŽjC‹¤“¯‘ã•\i‰iˆä‘åŽ÷C–k‘ºŒ\ˆêjD
  15. —ߘa3”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æji2021”N6ŒŽ`2022”N3ŒŽjC‘ã•\D
  16. Œö‰và’c–@l Z—Fà’c@Šî‘b‰ÈŠwŒ¤‹†•¬wCOVID-19”ò–—Š´õ—\‘ª‚ÉŒü‚¯‚½‹ó‹C’†‚ð•Y‚¤ŒÅ‘Ì—±Žq‚̬‘Š—¬ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“xi2020”N11ŒŽjC‘ã•\D
  17. JAXAw’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†xi2020”N8ŒŽ`2021”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  18. Œö‰và’c–@l ‰¡•lŠwp‹³ˆçU‹»à’c Œ¤‹†•¬w‹C‘ÌEŒÅ‘̬‘Š—¬ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚é COVID-19”ò–—Š´õ¸–§—\‘ªxi2020”N7ŒŽjC‘ã•\D
  19. ‰ÈŠwŒ¤‹†”ï•â•‹àiŒ¤‹†¬‰ÊŒöŠJ‘£i”ïjuŒ¤‹†¬‰ÊŒöŠJ”­•\i‚aji‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚Ö`‚j‚`‚j‚d‚m‚g‚hjvg”òãÄ‘Ìi‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚É‚Í`hi2019”N4ŒŽ`2020”N3ŒŽjC‘ã•\D
  20. JAXAw”ñ’èí”’l—¬‘©‚𓱓ü‚µ‚½‚‰ð‘œ“xDDES‚É‚æ‚é’ᑬƒoƒtƒFƒbƒg‚̉ðÍxi2019”N7ŒŽ`2020”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  21. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠî”ÕŒ¤‹†iCjvw‰æ‘œˆ—‚Æ—¬‘Ì—ÍŠw‚Ì—Z‡‚É‚æ‚éÕŒ‚”gŒŸ’m‚Æ64”{‰ð‘œ“x—¬‘ÌŒvŽZxi2019”N4ŒŽ`2022”N3ŒŽjC‘ã•\D
  22. •½¬31”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æji2019”N7ŒŽ`2020”N3ŒŽjC‘ã•\D
  23. JAXAw—̈攻•ÊŠÖ”‚𓱓ü‚µ‚½‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxi2018”N6ŒŽ`2019”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  24. Œö‰và’c–@l ‰¡•lŠwp‹³ˆçU‹»à’c •½¬30”N“xŠCŠO“nq” w“dŽ¥—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Ì‚½‚ß‚ÌSLAU2-HLLIƒnƒCƒuƒŠƒbƒh–@xi2018”N8ŒŽjD
  25. “ú–{ŠwpU‹»‰ïu¬E’†E‚Z¶‚Ì‚½‚߂̃vƒƒOƒ‰ƒ€@‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚Ö`KAKENHIiŒ¤‹†¬‰Ê‚̎ЉïŠÒŒ³E•‹yŽ–‹Æjvw”òãÄ‘Ìi‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚É‚Í`xi2018”N4ŒŽ`2019”N3ŒŽjC‘ã•\D
  26. •½¬30”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æjw“V‘Ì•¨—Šw^q‹ó‰F’ˆHŠw—Z‡‚É‚æ‚é‰F’ˆ•¨—‚̉ð–¾C‚»‚Ì‚QF•Ä‘ƒm[ƒgƒ‹ƒ_ƒ€‘åŠw‚Æ‚Ì‘Û‹¤“¯Œ¤‹†‚Ì‘£ixi2018”N4ŒŽ`2019”N3ŒŽjC‘ã•\D
  27. JAXAw‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxi2017”N6ŒŽ`2018”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  28. Œö‰và’c–@l ‰¡•lH‹Æ‰ï •½¬29”N“x Œ¤‹†ŽÒ“™‚ÌŠCŠO”hŒ­i2017”N6ŒŽjD
  29. •½¬29”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æjw“V‘Ì•¨—Šw^q‹ó‰F’ˆHŠw—Z‡‚É‚æ‚é‰F’ˆ•¨—‚̉ð–¾F•Ä‘ƒm[ƒgƒ‹ƒ_ƒ€‘åŠwBalsara y‹³Žö‚Æ‚Ì‘Û‹¤“¯Œ¤‹†‚Ì—§‚¿ã‚°xi2017”N4ŒŽ`2018”N3ŒŽjC‘ã•\D
  30. JAXAw—¬‘̉ð̓R[ƒhFaSTAR‚Ö‚Ì‚‰ð‘œ“xƒXƒL[ƒ€‚Ì“±“üxi2016”N6ŒŽ`2017”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  31. Œö‰và’c–@l ’†“‡‹L”O‘ÛŒð—¬à’c “ú–{lŽáŽèŒ¤‹†ŽÒŒ¤‹†•¬‹àCwÕŒ‚”gŒ»Û‚ð‚‰ð‘œ“x‚É‘¨‚¦‚邽‚ß‚Ì—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹Zp‚Ì\’zxi2015”N4ŒŽ`2016”N3ŒŽjC‘ã•\D
  32. •½¬26”N“xuJAXAq‹ó–{•”‚É‚¨‚¯‚éŒö•åŒ^Œ¤‹†vCi5j‚Œ}Šp‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½‚¸“x‚Œø—¦CFD‰ðÍŽè–@‚ÌŒ¤‹†Cw‘J‰¹‘¬—p‘æ‚Q§ŒÀŠÖ”‚É‚æ‚邉𑜓xE‚Œø—¦CFDŽè–@xi2014”N8ŒŽ`2016”N3ŒŽjC‹¤“¯Œ¤‹†C‘ã•\D
  33. Œö‰và’c–@l ‰¡•lŠwp‹³ˆçU‹»à’c •½¬26”N“xŠCŠO“nq” w‚‰ð‘œ“xC”ñ\‘¢ŠiŽqƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½ŽUˆí’ጸSLAU–@‚¨‚æ‚ÑAUSM+-up–@xi2014”N8ŒŽjD
  34. ‰ÈŠwŒ¤‹†”ï•â•‹àuŽáŽèŒ¤‹†iBjvw”’l“I•]‰¿–@‚ÉŠî‚­‚‘¬E’ᑬE¬‘Š—¬“‡‰ðÍVŽè–@‚ÌŒ¤‹†xi2013”N4ŒŽ`2016”N3ŒŽjC‘ã•\D
  35. ‰ÈŠwŒ¤‹†”ï•â•‹àu“Á•ÊŒ¤‹†ˆõ§—ã”ïvw”’l“IƒAƒvƒ[ƒ`‚É‚æ‚éÕŒ‚”gˆÀ’èE‘S‘¬“x—¬‘̉ðÍŽè–@‚ÌŒ¤‹†xi2011”N4ŒŽ`2013”N3ŒŽjC‘ã•\D
  36. “ú–{ŠwpU‹»‰ï@“ñ‘ŠÔŒð—¬Ž–‹Æ@•½¬26”N“xƒI[ƒvƒ“ƒp[ƒgƒi[ƒVƒbƒv‹¤“¯Œ¤‹†iƒƒVƒA˜A–MjwŠî‘b‹y‚ÑHŠw–â‘è‚É‚¨‚¯‚é—¬‘Ì—ÍŠw“I•sˆÀ’è«‚Æ——¬‚ÌŒvŽZ‰ÈŠw“I‰ð–¾ (The investigation of hydrodynamic instabilities and turbulence in fundamental and technological problems by means of mathematical modeling on supercomputers)xi2014”N7ŒŽ`2016”N6ŒŽjC•ª’Si‘ã•\F–¼ŒÃ‰®‘åŠw@ΈäŽÆ‹³ŽöGƒƒVƒA‰ÈŠwƒAƒJƒfƒ~[@ƒƒ“ƒVƒ‡ƒtEƒCƒS[ƒ‹‹³ŽöjD
  37. wH25”N“x‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½”’l—¬‘©‚̉ü—Çxi2013”N8ŒŽ`2014”N3ŒŽjCŠé‹Æ“™‚©‚ç‚ÌŽó‘õŒ¤‹†C•ª’SD
  38. à’c–@l ‰F’ˆ‰ÈŠwU‹»‰ï ‘ÛŠw‰ïoÈ—·”ïŽx‰‡i2010”N6ŒŽjD
  39. –¼ŒÃ‰®‘åŠwHŠw•” •”‹ÇŠÔ‹¦’èZ ŒðŠ·—¯Šw¶§Šw‹ài2006”N8ŒŽ`2007”N7ŒŽjD
  40. 21¢‹ICOEƒvƒƒOƒ‰ƒ€uŒvŽZ‰ÈŠwƒtƒƒ“ƒeƒBƒAvŒ¤‹†•â•‹à‚¨‚æ‚Ñ‘“àŠOo’£—·”ïi2004”N10ŒŽ`2006”N7ŒŽjD
  41. –¼ŒÃ‰®‘åŠwHŠw•” ‘ÛŠw‰ï o’£—·”流w‹ài2004”N1ŒŽjD
  42. wTSTO•ª—£Žž‚É‚¨‚¯‚é‹ó—ÍŠ±Â‚ÉŠÖ‚·‚錤‹†xi2007”N7ŒŽ`2008”N3ŒŽjCŠé‹Æ“™‚©‚ç‚ÌŽó‘õŒ¤‹†C•ª’SD
  43. wTSTO‚É‚¨‚¯‚é‹É’´‰¹‘¬‹ó—ÍŠ±Âxi2006”N9ŒŽ`2007”N3ŒŽjCoŽ‘‹à‚É‚æ‚éŽó‘õŒ¤‹†C•ª’SD
  44. wƒƒPƒbƒg‘Å‚¿ã‚°Žž‚̉¹‹¿‰ðÍxi2006”N1ŒŽ`2006”N3ŒŽjCŠé‹Æ“™‚©‚ç‚ÌŽó‘õŒ¤‹†C•ª’SD
  45. wTSTO‚É‚¨‚¯‚é‹ó—ÍŠ±Â‚̈³—Í‚Æ‹ó—͉Á”M—¦‚Ì’è—Ê“I•]‰¿xi2005”N7ŒŽ`2006”N3ŒŽjCoŽ‘‹à‚É‚æ‚éŽó‘õŒ¤‹†C•ª’SD
Šw‰ï‚Ö‚ÌvŒ£
  1. ‹ó‹C—ÍŠw•”–å@ˆÏˆõF@35th ISTS, 2024-2025.
  2. ‘æ32`33Šú@‘ã‹cˆõF@iˆêŽÐj“ú–{—¬‘Ì—ÍŠw‰ï, 2024-2025.
  3. ‹ó‹C—ÍŠw•”–å@ˆÏˆõF@34th ISTS, 2022-2023.
  4. ƒI[ƒKƒiƒCƒUF wOS.2-1F”ñˆ³k—¬‚ê‰ð–@Cˆ³k—¬‚ê‰ð–@xC”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€i‘æ34‰ñ`j, 2020-.
  5. “ú–{‹@ŠBŠw‰ï@‰F’ˆHŠw•”–å ‘æ99ŠúˆÏˆõC2021-2022.
  6. “ú–{‹@ŠBŠw‰ï@_“ÞìƒuƒƒbƒNŠ²Ž–‰ïˆÏˆõC2021-2022.
  7. ‹ó‹C—ÍŠw•”–å@ˆÏˆõ’·F@33rd ISTS, 2020-2022.
  8. •ª‰È‰ïˆÏˆõF@“ú–{‹@ŠBŠw‰ï RC286 —¬‚ê‚Ìæi“IŒv‘ªEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“–@‚Æ—¬‘Ìî•ñ‚Ì‚“x—˜—p‚ÉŠÖ‚·‚錤‹†•ª‰È‰ï, 2020-2022.
  9. ŽÀsˆÏˆõF ‘æ34‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, 2020.
  10. ‹ó‹C—ÍŠw•”–å@•›ˆÏˆõ’·F@32nd ISTS, 2018-2019.
  11. Š²Ž–F •½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€, 2018-2019.
  12. ŽÀsˆÏˆõF ‘æ32‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, 2018.
  13. ŽÀsˆÏˆõF •½¬28”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€, 2017.
  14. Š²Ž–F ‘æ48‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ34‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€, 2016.
  15. “ú–{q‹ó‰F’ˆŠw‰ï@‘æ47`48Šú@‹ó‹C—ÍŠw•”–劲Ž–C2015`2016”N“xD
  16. “ú–{q‹ó‰F’ˆŠw‰ï@‘æ47`48Šú@L•ñˆÏˆõC2015`2016”N“xD
  17. ŽÀsˆÏˆõF “ú–{‹@ŠBŠw‰ï ‘æ28‰ñŒvŽZ—ÍŠwu‰‰‰ïiCMD2015j, 2015.
  18. ŽÀsˆÏˆõF ‘æ‚S‚V‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ‚R‚R‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€, 2015.
  19. ŽÀsˆÏˆõF “ú–{‹@ŠBŠw‰ï ŠÖ“ŒŽx•”‘æ21Šú‘‰ïEu‰‰‰ï, 2015.
  20. ŽÀsˆÏˆõF ‘æ27‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, 2013.
  21. ‘Û‰ï‹cÀ’·F "Shock-Capturing Schemes II," 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, Jun. 2011.
˜_•¶•ÒW
  1. Journal of Evolving Space Activities (Associate Editor)
  2. Aerospace Technology Japan (Associate Editor)
Žå‚Ș_•¶¸“Ç
  1. Journal of Computational Physics (2014: Outstanding Reviewer)
  2. Computers & Fluids
  3. AIAA Journal
  4. Communications in Computational Physics
  5. International Journal for Numerical Methods in Fluids
  6. Journal of Propulsion and Power
  7. Physics of Fluids
‹³ˆçŽÀÑ
  1. i2018”N4ŒŽ`j@‰¡•l‘—§‘åŠw@u‰ž—p‹@ŠBÝŒv»}Iviƒhƒ[ƒ““™”òs‘Ì’S“–j
  2. i2017”N4ŒŽ`j@‰¡•l‘—§‘åŠw@u‹ó‹C—ÍŠwv
  3. i2017”N4ŒŽ`j@‰¡•l‘—§‘åŠw@u”’l—¬‘Ì—ÍŠw“ü–åv
  4. i2015”N10ŒŽ`j@‰¡•l‘—§‘åŠw@u—¬‘Ì—ÍŠwIIv
  5. i2015”N10ŒŽ`j@‰¡•l‘—§‘åŠw‰@@u‹@ŠBƒVƒXƒeƒ€HŠw—ÖuII (Seminar in Mechanical System Engineering II)v
  6. i2015”N4ŒŽ`j@‰¡•l‘—§‘åŠw‰@@u‹@ŠBƒVƒXƒeƒ€HŠw—Öu‡T (Seminar in Mechanical System Engineering I)v
  7. i2014”N10ŒŽ`j@‰¡•l‘—§‘åŠw‰@@uˆ³k«—¬‘Ì—ÍŠw (Compressible Flow)v
  8. i2014”N10ŒŽ`2017”N 3ŒŽj@‰¡•l‘—§‘åŠw@u‹@ŠBŒn‚Ì”Šw‰‰KIIv
  9. i2013”N10ŒŽ`2014”N 1ŒŽj@–¼ŒÃ‰®‘åŠw‰@@u—¬‘Ì—ÍŠwƒZƒ~ƒi[1Dv
  10. i2013”N10ŒŽ`2014”N 1ŒŽj@–¼ŒÃ‰®‘åŠw@uŒvŽZ—¬‘Ì—ÍŠwv
  11. i2013”N 6ŒŽ`2013”N 9ŒŽj@–¼ŒÃ‰®‘åŠw‰@@uq‹ó‹@‘ÛŠJ”­ƒvƒƒWƒFƒNƒg‰‰Kv
  12. i2013”N 5ŒŽ`2013”N 8ŒŽj@–¼ŒÃ‰®‘åŠw‰@@ uJUACEP Summer Research Program 2013vi“ú–{ŠwpU‹»‰ï@w‘åŠw‚Ì¢ŠE“WŠJ—Í‹­‰»Ž–‹Æxj@ƒ~ƒVƒKƒ“‘åŠwŠw¶‚ÌŒ¤‹†Žw“±FwAUSM Family 2nd-order Schemes for Ideal Magnetohydrodynamics with Divergence-Free Reconstructionx
  13. i2013”N 4ŒŽ`2013”N 7ŒŽj@–¼ŒÃ‰®‘åŠw@u‹@ŠBEq‹óHŠw‰ÈŽÀŒ±‘æ1v
  14. i2013”N 4ŒŽ`2013”N 7ŒŽj@–¼ŒÃ‰®‘åŠw‰@@u—¬‘Ì—ÍŠwƒZƒ~ƒi[1Cv
  15. i2012”N10ŒŽ`2013”N 1ŒŽj@–¼ŒÃ‰®‘åŠw‰@@u—¬‘Ì—ÍŠwƒZƒ~ƒi[1Bv
Žó‘õ^‹¤“¯Œ¤‹†
  1. i2021”N 8ŒŽ`2022”N 2ŒŽj@JAXAF w’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†i‚»‚Ì‚QjxC‘ã•\
  2. i2020”N 8ŒŽ`2021”N 3ŒŽj@JAXAF w’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†xC‘ã•\
  3. i2019”N 7ŒŽ`2020”N 3ŒŽj@JAXAF w”ñ’èí”’l—¬‘©‚𓱓ü‚µ‚½‚‰ð‘œ“xDDES‚É‚æ‚é’ᑬƒoƒtƒFƒbƒg‚̉ðÍxC‘ã•\
  4. i2018”N 6ŒŽ`2019”N 3ŒŽj@JAXAF w—̈攻•ÊŠÖ”‚𓱓ü‚µ‚½‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxC‘ã•\
  5. i2017”N 6ŒŽ`2018”N 3ŒŽj@JAXAF w‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxC‘ã•\
  6. i2016”N 6ŒŽ`2017”N 3ŒŽj@JAXAF w—¬‘̉ð̓R[ƒhFaSTAR‚Ö‚Ì‚‰ð‘œ“xƒXƒL[ƒ€‚Ì“±“üxC‘ã•\
  7. i2014”N 8ŒŽ`2016”N 3ŒŽj@•½¬26”N“xuJAXAq‹ó–{•”‚É‚¨‚¯‚éŒö•åŒ^Œ¤‹†vCi5j‚Œ}Šp‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½‚¸“x‚Œø—¦CFD‰ðÍŽè–@‚ÌŒ¤‹†C‘ã•\
  8. i2013”N 8ŒŽ`2014”N 3ŒŽj@JAXAq‹ó–{•”F@wH25”N“x‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½”’l—¬‘©‚̉ü—ÇxC‘ã•\
  9. i2012”N10ŒŽ`2013”N 3ŒŽj@–^Ž©“®ŽÔH‹Æ‰ïŽÐF@ŽÔ‘̃Kƒ‰ƒX•\–Êã‚̉t“H‚Æ‚»‚Ì‹OÕ‚Ì”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“
  10. i2006”N 2ŒŽ`2008”N 3ŒŽj@JAXA‘Œ¤F@’´‰¹‘¬ƒWƒFƒbƒg‚Ì—¬‘ÌE‰¹‹¿‰ðÍ
  11. i2006”N 2ŒŽ`2006”N 7ŒŽj@–^Ž©“®ŽÔH‹Æ‰ïŽÐF@ƒhƒAƒ~ƒ‰[‚©‚ç”­¶‚·‚鉹‹¿‰ðÍ
  12. i2004”N11ŒŽ`2006”N 3ŒŽj@–^»“S‰ïŽÐF@•¡”ƒWƒFƒbƒg‚Ì‘ŠŒÝŠ±Â‚Ì”’l‰ðÍ
Ž‘ŠiEŽï–¡
  1. 2022”N“x“~‹G ƒXƒyƒCƒ“Œê‹Z”\ŒŸ’è 6‹‰i2023”N1ŒŽj
  2. 2021”N“xH‹G ŽÀ—pƒtƒ‰ƒ“ƒXŒê‹Z”\ŒŸ’莎Œ± 5‹‰i2021”N12ŒŽj
  3. 3‹‰ƒtƒ@ƒCƒiƒ“ƒVƒƒƒ‹Eƒvƒ‰ƒ“ƒjƒ“ƒO‹Z”\Žmi“ú–{FP‹¦‰ïji2021”N6ŒŽj
  4. ‘æ53‰ñƒnƒ“ƒOƒ‹”\—ÍŒŸ’莎Œ± 5‹‰i2019”N12ŒŽj
  5. ‘æ133‰ñTOEICŒöŠJƒeƒXƒg 920“_i2007”N9ŒŽj
  6. TOEFL CBT 237i2005”N10ŒŽj
  7. ’†Œ^Ž©“®ŽÔ‘æˆêŽí‰^“]–Æ‹–i1998”N11ŒŽj
Š‘®Šw‰ï
  1. AIAAiAmerican Institute of Aeronautics and Astronautics, ƒAƒƒŠƒJq‹ó‰F’ˆŠw‰ïj Senior Member (Lifetime Member)
  2. Vertical Flight Society (VFS)i‹Œ@•Ä‘ƒwƒŠƒRƒvƒ^[Šw‰ï; AHSj Member
  3. “ú–{q‹ó‰F’ˆŠw‰ï@³‰ïˆõ
  4. “ú–{—¬‘Ì—ÍŠw‰ï@³‰ïˆõ
  5. “ú–{‹@ŠBŠw‰ï@³‰ïˆõ
  6. iˆêŽÐj‰Î–òŠw‰ï@‰ïˆõ
  7. iŒöŽÐjŽ©“®ŽÔ‹Zp‰ï@‰ïˆõ
  8. ‰F’ˆHŠwˆÏˆõ‰ï@ƒƒ“ƒo
E—ð
  1. i2023”N 8ŒŽ`2024”N 3ŒŽj Visiting Academic Fellow at University of Cambridge, UK (Hosted by Prof. P.G. Tucker)
  2. i2014”N 4ŒŽ`Œ»Ýj ‰¡•l‘—§‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰@@i‘åŠw‰@—HŠw•{@‹@ŠBEÞ—¿EŠC—mŒnHŠwêU@q‹ó‰F’ˆHŠw‹³ˆç•ª–ì^‹@ŠBHŠw‹³ˆç•ª–ì@•¹”CC@—HŠw•”@‹@ŠBEÞ—¿EŠC—mŒnŠw‰È@•¹”Cj@y‹³Žö
  3. i2012”N10ŒŽ`2014”N 3ŒŽj –¼ŒÃ‰®‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@‹ó—ÍE„iuÀ@•‹³
  4. i2011”N10ŒŽ`2012”N 9ŒŽj NASA Glenn Research Center, Ohio Aerospace Institutei•Ä‘j ‹qˆõŒ¤‹†ˆõ (Hosted by Dr. Meng-Sing Liou)
  5. i2011”N 4ŒŽ`2012”N 9ŒŽj JAXA/JEDIƒZƒ“ƒ^[@“ú–{ŠwpU‹»‰ï“Á•ÊŒ¤‹†ˆõPD@iŽó“üŒ¤‹†ŽÒF@“ˆ‰pŽu@ƒZƒ“ƒ^[’·j
  6. i2009”N 1ŒŽ`2009”N 2ŒŽj@ƒAƒCƒIƒB—§‘åŠwi•Ä‘j@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@‹qˆõŒ¤‹†ˆõ (Hosted by Prof. Z.J. Wang)
  7. i2008”N 4ŒŽ`2011”N 3ŒŽj@JAXA/JEDIƒZƒ“ƒ^[@ƒvƒƒWƒFƒNƒgŒ¤‹†ˆõ@iŽó“üŒ¤‹†ŽÒF@“ˆ‰pŽu@ƒZƒ“ƒ^[’·j
  8. i2004”N10ŒŽ`2006”N 7ŒŽj@–¼ŒÃ‰®‘åŠw@‘åŠw‰@@21¢‹ICOEƒvƒƒOƒ‰ƒ€uŒvŽZ‰ÈŠwƒtƒƒ“ƒeƒBƒAvRAiŒ¤‹†ƒAƒVƒXƒ^ƒ“ƒgj@iŽw“±‹³ˆõF@’†‘º‰À˜N@‹³Žöj
Šw—ð
  1. i2004”N 4ŒŽ`2008”N 3ŒŽj@–¼ŒÃ‰®‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@”ŽŽmŒãŠú‰Û’ö@iŽw“±‹³ˆõF@’†‘º‰À˜N@‹³Žöj
  2. i2006”N 8ŒŽ`2007”N 7ŒŽj@ƒ~ƒVƒKƒ“‘åŠwi•Ä‘j@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@ŒðŠ·—¯Šw¶ (Žw“±‹³ˆõ: Prof. Philip L. Roe and Prof. Bram van Leer)
  3. i2002”N 4ŒŽ`2004”N 3ŒŽj@–¼ŒÃ‰®‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@”ŽŽm‘OŠú‰Û’ö@iŽw“±‹³ˆõF@’†‘º‰À˜N@‹³Žöj
  4. i1998”N 4ŒŽ`2002”N 3ŒŽj@“Œ‹žH‹Æ‘åŠw@HŠw•”@‹@ŠB‰F’ˆŠw‰È@iŽw“±‹³Š¯F@‹{“à•q—Y@‹³ŽöC“X‹´Œì@•‹³Žöj
ŠwˆÊ˜_•¶Fw‹É’´‰¹‘¬ÕŒ‚”gŠ±Â—¬‚ê‚Ì”’l‰ðÍx






Copyright © 2014- Aerodynamics Laboratory, Yokohama National University, All rights reserved.