¡ –k‘º Œ\ˆêC ”ŽŽmiHŠwj/ Dr. Keiichi KITAMURA

› ‰¡•l‘—§‘åŠw@y‹³Žö / Associate Professor at Yokohama National University, Japan
› kitamuraynu.ac.jp@i""‚Í"@"‚É•Ï‚¦‚Ä‚­‚¾‚³‚¢j
› Visiting Researcher at University of Cambridge, UK
› 2023”N9ŒŽŒ»Ý‚̏î•ñ‚Å‚·

œ —ߘa4”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ‰ÈŠw‹ZpÜiŒ¤‹†•”–åj‚ð JAXA“ˆ”ŽŽm‚Æ‹¤“¯ŽóÜ‚µ‚Ü‚µ‚½i2022/04/20jD

œ SpringerŽÐ‚æ‚èÙ’˜"Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method"‚ªŠ§s‚³‚ê‚Ü‚µ‚½(2020/11/01)D
Advancement of Shock Capturing Computational Fluid Dynamics Methods

œ •½¬31”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ŽáŽè‰ÈŠwŽÒÜ‚ðŽóÜ‚µ‚Ü‚µ‚½i2019/04/17jD

œ ƒCƒvƒVƒƒ“ƒƒPƒbƒg‚Ì‹ó—͉ðÍ—áiJAXAÝEŽžjF
’˜‘
  1. Kitamura, K., "Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method," Springer Nature Singapore, 2020i’P’˜j. DOI: 10.1007/978-981-15-9011-5, ISBN 978-981-15-9010-8, (eBook) 978-981-15-9011-5
  2. –k‘ºŒ\ˆêC“ˆ‰pŽuCu‹ó”ò‚ÔƒNƒ‹ƒ}@`‹ó‚̃‚ƒrƒŠƒeƒBŠv–½‚ÉŒü‚¯‚½ŠJ”­Å‘Oü`vw‘æ‚RÍ@ŽÔ‘̐݌v‹Zp@‘æ‚Pß@‹ó‹C—ÍŠw‚É‚æ‚é‹ó”ò‚ÔƒNƒ‹ƒ}ÝŒvxC(Š”)ƒGƒkEƒeƒB[EƒGƒXC2020i•ª’SŽ·•MjD@ISBN 978-4-86043-678-0 C3065
¸“Ç•t˜_•¶F@71•Ò
  1. Nimura, K., Tsutsui, F., Kitamura, K., and Nonaka, S.: Aerodynamic Effects of Surface Protuberance Size on Slender-bodied Supersonic Vehicle, Journal of Spacecraft and Rockets, (Accepted).
  2. Aono, J., and Kitamura, K.: …’†ÕŒ‚”g‚Æ‚ÌŠ±Â‚É‚æ‚è•ö‰ó‚·‚é‘ȉ~Œ`‹C–A‚̐”’lŒvŽZ(Numerical simulation of elliptic bubble deformation by underwater shock wave), Explosion, (Accepted).
  3. Furusawa, Y., Kitamura, K., Ikami, T., Nagai, H., Oyama, A.: Numerical Study on Aerodynamic Characteristics of Wing within Propeller Slipstream at Low-Reynolds-Number, Transactions of JSASS, (Accepted).
  4. –{–Ø ãČá, “ñ‘º ˜aŽ÷, áÁ•¿ FŠî, –k‘ºŒ\ˆêC–ì’† ‘Fƒ}ƒbƒn0.7‚¨‚æ‚Ñ1.3‚É‚¨‚¯‚é×’·•¨‘̉¡—Í“Á«‚Ö‚Ì“Ë‹NƒTƒCƒY‚̉e‹¿ C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCiŒfÚŒˆ’èj
  5. Kitamura, K., Takagi, Y., Harada, T., Yasumura, Y., Kanamori, M., and Hashimoto, A.: Leading-Edge Separation Behaviors in SA RANS and SA-Based DDES: Simple Modifications for Improved Prediction, Computers & Fluids, Volume 255, 15 April 2023, 105814. https://doi.org/10.1016/j.compfluid.2023.105814 [Open Access]
  6. Furusawa, Y., and Kitamura, K.: Stability Effect of Multidimensional Velocity Components in Numerical Flux SLAU, International Journal for Numerical Methods in Fluids, Vol.95, No.6 (2023), pp.992-1010. https://doi.org/10.1002/fld.5183
  7. Aono, J., and Kitamura, K.: Development and Validation of Parameter-Free, Two-Fluid, Viscous Compressible Multiphase Flow Solver for Cough-Droplet Simulations, Journal of Fluid Science and Technology, 2023 Volume 18 Issue 1 Pages JFST0016. https://doi.org/10.1299/jfst.2023jfst0016 [Open Access]
  8. Mamashita, T., Muto, T., Kitamura, K., and Nonaka, S.: Numerical Analysis on Axial Force Characteristics of Reusable Launch Vehicle at 150-180‹ Angles-of-Attack, Transactions of JSASS, 2023 Volume 66 Issue 4 Pages 118-129. https://doi.org/10.2322/tjsass.66.118 [Open Access]
  9. Tsutsui, F., Takagi, Y., Takimoto, H., Kitamura, K., and Nonaka, S.: Side Force Characteristics of Slender-Bodied Supersonic Vehicle with Two Protuberances, Journal of Spacecraft and Rockets, Vol. 59, No. 5 (2022), pp. 1697-1712 doi: https://doi.org/10.2514/1.A35319
  10. Tsutsui, F., Kitamura, K., and Nonaka, S.: Effects of RANS Turbulence Models on Aerodynamics of Slender-Bodied Launch Vehicles with Protuberance, International Journal of Aeronautical and Space Sciences, 2022. https://doi.org/10.1007/s42405-022-00482-3
  11. Aono, J., and Kitamura, K.: An appropriate numerical dissipation for SLAU2 towards shock-stable compressible multiphase flow simulations, Journal of Computational Physics, Volume 462, 1 August 2022, 111256. https://doi.org/10.1016/j.jcp.2022.111256 [Open Access]
  12. Kitamura, K., Yue, Z., Fujimoto, T., Asai, H., Kubota, A., Myokan, M., Ichihara, D., and Sasoh, A.: Numerical and experimental study on the behavior of vortex rings generated by shock-bubble interactions, Physics of Fluids, Volume 34, Issue 4, 046105 (2022). https://doi.org/10.1063/5.0083596
  13. ûü–Ø—YÆC•“¡’q‘¾˜NC–k‘ºŒ\ˆêC–ì’†‘Fƒ_ƒuƒ‹ƒR[ƒ“Œ^ÄŽg—pƒƒPƒbƒg‚ÌŒ}Šp60‹‰¡—Í“Á«‚ÉŠÖ‚·‚é•—“´ŽŽŒ±‚Ɛ”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WC‘æ70ŠªC‘æ1†Cpp.14-21, 2022. DOI: https://doi.org/10.2322/jjsass.70.14
  14. Kawashima, H., Kitamura, K., and Nonaka, S.: Numerical/Experimental Hybrid Study on Base Pressure and Cavity Pressure Corrections for Transonic Wind Tunnel Tests, Transactions of JSASS, Vol. 65, Issue 3, pp. 116-122 (2022). https://doi.org/10.2322/tjsass.65.116
  15. Mamashita, T., Kitamura, K., and Minoshima, T.: SLAU2-HLLD Numerical Flux with Wiggle-Sensor for Stable Low Mach Magnetohydrodynamics Simulations, Computers & Fluids, Volume 231, 15 December 2021, 105165. https://doi.org/10.1016/j.compfluid.2021.105165 [Open Access]
  16. Kitamura, K., Fukumoto, K., and Mori, K.: Numerical Study of Surface Pressure Fluctuation on Rigid Disk-Gap-Band Type Supersonic Parachutes, AIAA Journal, Vol. 58, No. 12, 2020, pp. 5347-5360. https://arc.aiaa.org/doi/10.2514/1.J059190@[Open Access]
  17. –k‘ºŒ\ˆêC’·’J®‰›–çC“cŒû³lCX_ˆêF‰¡’f•¬—¬‹ó—ÍŠ±Â‚𔺂¤ŽOŽŸŒ³‹É’´‰¹‘¬‹ó—͉Á”M‚̐”’lŒvŽZC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.19, pp. 141-150, 2020D DOI: 10.2322/astj.JSASS-D-20-00015
  18. Ogawa, S. and Kitamura, K.: Improvement of the Aerodynamic Characteristics of Wings with 3D Laminar Separation Control using the Moving Surface Method, Trans. JSASS, Aerospace Tech. Japan, Vol. 18, No. 6, pp. 289-298, 2020. DOI: 10.2322/tastj.18.289
  19. Kitamura, K., Mamashita, T., and Ryu, D.: SLAU2 applied to Two-Dimensional, Ideal Magnetohydrodynamics Simulations, Computers & Fluids, Volume 209, 15 September 2020, 104635 https://doi.org/10.1016/j.compfluid.2020.104635
  20. Minoshima, T., Kitamura, K., and Miyoshi, T.: A Multistate Low-dissipation Advection Upstream Splitting Method for Ideal Magnetohydrodynamics, The Astrophysical Journal Supplement Series, Vol.248:12 (21pp), 2020 May. https://doi.org/10.3847/1538-4365/ab8aee
  21. Takagi, Y., Aogaki, T., Kitamura, K., and Nonaka, S.: Numerical Study on Aerodynamic Characteristics of Slender-bodied Reusable Rockets Using Fins and Vortex Flaps at Very High Angles of Attack, Trans. JSASS, Aerospace Tech. Japan, Vol. 18, No. 4, pp. 149-158, 2020. https://doi.org/10.2322/tastj.18.149
  22. Kitamura, K. and Shima, E.: AUSM-like Expression of HLLC and Its All-Speed Extension, International Journal for Numerical Methods in Fluids, Vol.92, 2020, pp.246-265. DOI: 10.1002/fld.4782
  23. Fujimoto, T., Kawasaki, T., and Kitamura, K.: Canny-Edge-Detection/Rankine-Hugoniot-conditions unified shock sensor for inviscid and viscous flows, Journal of Computational Physics, Volume 396, 1 November 2019, Pages 264-279.@DOI: 10.1016/j.jcp.2019.06.071 [Open Access]
  24. Kitamura, K. and Shima, E.: Numerical Experiments on Anomalies from Stationary, Slowly Moving, and Fast-Moving Shocks, AIAA Journal, Vol.57, No.4, 2019, pp.1763-1772. https://arc.aiaa.org/doi/abs/10.2514/1.J057366
  25. ‚—эq‹PC–k‘ºŒ\ˆêFŠJŽPŽž‚Ì’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚ð–Í‹[‚µ‚½ŠÈˆÕŒ`ó“àŠO‚̐”’l—¬‘̉ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.18, pp.67-72, 2019. https://doi.org/10.2322/astj.JSASS-D-18-00016
  26. Kawauchi, K., Harada, T., Kitamura, K., and Nonaka, S.: Experimental and Numerical Investigations of Slender Body Side Force with Asymmetric Protuberances, Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1346-1357. https://arc.aiaa.org/doi/abs/10.2514/1.A34439
  27. Inatomi, A., Kitamura, K., and Nonaka, S.: Numerical Analysis on Reusable Rocket Aerodynamics with Reduced-Yaw-Force Configurations, Trans. JSASS Aerospace Tech. Japan, Vol. 17, Issue 4, 2019, pp.439-446. https://doi.org/10.2322/tastj.17.439
  28. Aogaki, T., Kitamura, K., and Nonaka, S.: Computational Study on Finned Reusable Rocket during Turnover, Trans. JSASS Aerospace Tech. Japan, Vol.17, Issue 2, 2019, pp.104-110. https://doi.org/10.2322/tastj.17.104
  29. Harada, T., Kitamura, K., and Nonaka, S.: Roll Moment Characteristics of Supersonic Flight Vehicle Equipped with Asymmetric Protuberance, Trans. JSASS Aerospace Tech. Japan, Vol.17, Issue 2, 2019, pp.111-119. https://doi.org/10.2322/tastj.17.111
  30. Kitamura, K., and Balsara, D.S.: Hybridized SLAU2-HLLI and Hybridized AUSMPW+-HLLI Riemann Solvers for Accurate, Robust, and Efficient Magnetohydrodynamics (MHD) Simulations, Part I: One-Dimensional MHD, Shock Waves, July 2019, Volume 29, Issue 5, pp 611-627. doi:10.1007/s00193-018-0842-0
  31. Aogaki, T., Kitamura, K., and Nonaka, S.: High Angle-of-Attack Pitching Moment Characteristics of Slender-Bodied Reusable Rocket, Journal of Spacecraft and Rockets, Vol. 55, No. 6, 2018, pp.1476-1489. doi:10.2514/1.A34211 [Preprint]
  32. Kitamura, K., Aogaki, T., Inatomi, A., Fukumoto, K., Takahama, T., and Hashimoto, A.: Post Limiters and Simple Dirty-Cell Detection for Three-Dimensional, Unstructured, (Unlimited) Aerodynamic Simulations, AIAA Journal, Vol. 56, No. 8, 2018, pp. 3192-3204. doi:10.2514/1.J056683 [Preprint]
  33. Kitamura, K. and Shima, E.: Pressure-equation-based SLAU2 for oscillation-free, supercritical flow simulations, Computers & FluidsCVol.163, 2018, pp.86-96. doi:10.1016/j.compfluid.2018.01.001
  34. –k‘ºŒ\ˆêC¬ì—DC‚à_r‹§F•\–ʈړ®–@‚É‚æ‚é—ƒ‚̒჌ƒCƒmƒ‹ƒY”‹ó—Í“Á«‚̉ü‘PC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.17, pp.227-236, 2018. doi:10.2322/astj.JSASS-D-17-00056
  35. Kitamura, K. and Hashimoto, A.: Simple a posteriori slope limiter (Post Limiter) for high resolution and efficient flow computations, Journal of Computational Physics, Vol.341, 2017, pp. 313-340. doi:10.1016/j.jcp.2017.04.002
  36. Kitamura, K. and Nonomura, T.: Assessment of WENO-extended two-fluid modelling in compressible multiphase flows, International Journal of Computational Fluid Dynamics, Vol.31, Issue 3, 2017, pp.188-194. doi:10.1080/10618562.2017.1311410
  37. Kitamura, K.: Assessment of SLAU2 and Other Flux Functions with Slope Limiters in Hypersonic Shock-Interaction Heating, Computers & Fluids, Vol.129, 2016, pp.134-145. doi:10.1016/j.compfluid.2016.02.006
  38. Kitamura, K. and Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations, Computers & Fluids, Vol.126, 2016, pp. 41-57. doi:10.1016/j.compfluid.2015.11.014
  39. “ˆ‰pŽuC–k‘ºŒ\ˆêF@‰A“IMUSCL–@‚ÆSMAC–@‚Ì“‡‚É‚æ‚é‘S‘¬“xˆ³k«CFD‰ð–@‚ɂ‚¢‚āC‚È‚ª‚êCVol.35, No.5, 2016, pp.391-401 [Paper]D
  40. Harada, N., Kitamura, K.(*), Okutsu, Y., Hamamoto, N., Mori, K., and Nakamura, Y.: Preliminary, One-Way Coupled, Rain-Droplets/Airflow Simulations over Automobile, International Journal of Automotive Engineering, Vol.6, No.4, 2015, pp.105-112.https://doi.org/10.20485/jsaeijae.6.4_105
  41. “cŒû³lCå”g’¼Ž÷C‰ª“c“¹®CˆÀˆäˆê•½C–k‘ºŒ\ˆêCX_ˆêC’†‘º‰À˜NF •z»’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚Ì‹ó—Í“Á«C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.63 (2015)CNo.6, pp.241-247Ddoi:10.2322/jjsass.63.241
  42. Kitamura, K. and Nonomura, T.: Simple and Robust HLLC Extensions of Two-Fluid AUSM for Multiphase Flow Computations, Computers & Fluids, Vol.100, 2014, pp.321-335. doi:10.1016/j.compfluid.2014.05.019
  43. Kitamura, K., Liou, M.-S., and Chang, C.-H.: Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations, Communications in Computational Physics, Vol.16, No.3, 2014, pp.632-674. doi:10.4208/cicp.020813.190214a
  44. Nonomura, T., Kitamura, K., and Fujii, K.: A Simple Interface Sharpening Technique with a Hyperbolic Tangent Function Applied to Compressible Two-Fluid Modeling, Journal of Computational Physics, Vol.258, 2014, pp.95-117. doi: 10.1016/j.jcp.2013.10.021
  45. Mano, S., Kitamura, K.(*), Doi, K., and Nakamura, Y.: Numerical Simulation Based on CFD for Aerodynamic Characteristics of Kite in Flight, Trans. JSASS Aerospace Tech. Japan, Vol.12, pp.1-10, 2014. doi:10.2322/tastj.12.1
  46. Kitamura, K., Nonaka, S., Kuzuu, K., Aono, J., Fujimoto, K., and Shima, E.: Numerical and Experimental Investigations of Epsilon Launch Vehicle Aerodynamics at Mach 1.5, Journal of Spacecraft and Rockets, Vol.50, No.4, 2013, pp.896-916. doi:10.2514/1.A32284
  47. Kitamura, K. and Shima, E.: Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes, Journal of Computational Physics, Vol.245, 2013, pp.62-83. doi:10.1016/j.jcp.2013.02.046
  48. Shima, E., Kitamura, K.(*), and Haga, T.: Green-Gauss/Weighted-Least-Squares Hybrid Gradient Reconstruction for Arbitrary Polyhedra Unstructured Grids, AIAA Journal, Vol.51, No.11, 2013, pp.2740-2747. doi: 10.2514/1.J052095
  49. Shima, E. and Kitamura, K.(*): Multidimensional Numerical Noise from Captured Shockwave and Its Cure, AIAA Journal, Vol.51, No.4, 2013, pp.992-998. doi: 10.2514/1.J052046
  50. Yasuda, H., Kitamura, K., and Nakamura, Y.: Numerical Analysis of Flow Field and Aerodynamic Characteristics of a Quadrotor, Trans. JSASS Aerospace Tech. Japan, Vol.11, pp.61-70, 2013. doi:10.2322/tastj.11.61
  51. Shima, E. and Kitamura, K.: New approaches for computation of low Mach number flows, Computers & Fluids, Vol. 85, 2013, pp.143-152. http://dx.doi.org/10.1016/j.compfluid.2012.11.017
  52. Kitamura, K., Shima, E., and Roe, P.: Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions, AIAA Journal, Vol. 50, No. 12, 2012, pp.2655-2669. doi:10.2514/1.J051227
  53. Kitamura, K., and Shima, E.: Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations, AIAA Journal, Vol. 50, No. 6, 2012, pp.1415-1426. doi:10.2514/1.J051269
  54. Kitamura, K., Shima, E., Fujimoto, K., and Wang, Z.J.: Performance of Low-Dissipation Euler Fluxes and Preconditioned LU-SGS at Low Speeds, Communications in Computational Physics, Vol.10, No.1, 2011, pp.90-119. doi:10.4208/cicp.270910.131110a
  55. Kitamura, K., Fujimoto, K., Kuzuu, K., Shima, E., and Wang, Z.J.: Validation of Arbitrary Unstructured CFD Code for Aerodynamic Analyses, Trans. Japan Soc. Aero. Space Sci., Vol.53, No.182, 2011, pp.311-319. doi:10.2322/tjsass.53.311 JOI:JST.JSTAGE/tjsass/53.311
  56. Shima, E. and Kitamura, K.(*): Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds, AIAA Journal, Vol.49, No.8, 2011, pp.1693-1709. doi:10.2514/1.55308
  57. –k‘ºŒ\ˆêCŠ‹¶˜alC“ü–å•üŽqC–ì’†‘C“¡–{Œ\ˆê˜YC•Ÿ“YXNC“ˆ‰pŽuF@ ƒCƒvƒVƒƒ“ƒƒPƒbƒg ƒ}ƒbƒn0.7‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì•—“´ŽŽŒ±‚Ɛ”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.10 (2011), pp.43-50D doi:10.2322/astj.10.43
  58. –k‘ºŒ\ˆêC“¡–{Œ\ˆê˜YCŠ‹¶˜alC–ì’†‘C“ü–å•üŽqC•Ÿ“YXNC“ˆ‰pŽuF@ ŽŸŠúŒÅ‘̃ƒPƒbƒg‹ó—Í“Á«‚ɂ‚¢‚Ă̐”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.10 (2011), pp.1-10D doi:10.2322/astj.10.1
  59. Kitamura, K., Shima, E., Nakamura, Y., and Roe, P.L.: Evaluation of Euler Fluxes for Hypersonic Heating Computations, AIAA Journal, Vol.48, No.4, 2010, pp.763-776. doi:10.2514/1.41605
  60. –k‘ºŒ\ˆêC“¡–{Œ\ˆê˜YC–ì’†‘C“ü–å•üŽqC•Ÿ“YXNC“ˆ‰pŽuF@ ŽŸŠúŒÅ‘̃ƒPƒbƒg‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì•—“´ŽŽŒ±C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶W@q‹ó‰F’ˆ‹ZpCVol.9 (2010), pp.9-14D doi:10.2322/astj.9.9
  61. Ozawa, H., Kitamura, K., Hanai, K., Mori, K., and Nakamura, Y.: Unsteady Aerodynamic Interaction between Two Bodies at Hypersonic Speed, Trans. Japan Soc. Aero. Space Sci., Vol.53, No.180, 2010, pp.114-121. doi:10.2322/tjsass.53.114
  62. ¬àVŒ[ŽfC‰ÔˆäŸËC–k‘ºŒ\ˆêCX_ˆêC’†‘º‰À˜NF@ ‹É’´‰¹‘¬ÕŒ‚”gE‹«ŠE‘wŠ±Â‚É‚¨‚¯‚éCrack‚Ì‹ó—͉Á”M—¦‚ւ̉e‹¿C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.58 (2010), No.674, pp.68-75Ddoi:10.2322/jjsass.58.68 JOI:JST.JSTAGE/jjsass/58.68
  63. Kitamura, K., Roe, P., and Ismail, F.: Evaluation of Euler Fluxes for Hypersonic Flow Computations, AIAA Journal, Vol.47, No.1, 2009, pp.44-53. doi:10.2514/1.33735
  64. Ibrahim, M.K., Nakamura, T., Kitamura, K., Mori, K., and Nakamura, Y.: The Role of Vortices in Side Jet/Blunt Body Interaction at Hypersonic Speed, Trans. JSASS Space Tech. Japan, Vol.7, 2009, pp.1-10. doi:10.2322/tstj.7.1
  65. ¬àVŒ[ŽfC–k‘ºŒ\ˆêC‰ÔˆäŸËCŽOD—–çCX_ˆêC’†‘º‰À˜NF@ ’´‰¹‘¬‹ó—ÍŠ±Â‚ð—˜—p‚µ‚½ƒJƒvƒZƒ‹Œ^‰F’ˆ—A‘—ƒVƒXƒeƒ€‚Ì‹Ù‹}•ª—£C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.57 (2009), No.664, pp.175-182Ddoi:10.2322/jjsass.57.175 JOI:JST.JSTAGE/jjsass/57.175
  66. –k‘ºŒ\ˆêC’†‘º‰À˜NF@‹É’´‰¹‘¬ÕŒ‚”gŠ±Â—¬‚ê‚É‚¨‚¯‚é‹ó—͉Á”M‚̐”’l‰ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.56 (2008)CNo.653, pp.269-277Ddoi:10.2322/jjsass.56.269 JOI:JST.JSTAGE/jjsass/56.269 ‘æ21‰ñi•½¬23”N“xjq‹ó‰F’ˆŠw‰ï§—ãÜŽóÜ
  67. –k‘ºŒ\ˆêC¬àVŒ[ŽfC‰ÔˆäŸËCX_ˆêC’†‘º‰À˜NF@‹É’´‰¹‘¬TSTO‚É‚¨‚¯‚éÕŒ‚”gŠ±ÂE‹«ŠE‘w”—£‚𔺂¤—¬‚êê‚̉ðÍC“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.56 (2008)CNo.653, pp.278-285Ddoi:10.2322/jjsass.56.278 JOI:JST.JSTAGE/jjsass/56.278
  68. Nishikawa, H. and Kitamura, K.: Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers, Journal of Computational Physics, Vol.227, No.4, 2008, pp.2560-2581. doi:10.1016/j.jcp.2007.11.003
  69. Murakami, K., Kitamura, K., Hashimoto, A., Aoyama, T. and Nakamura, Y.: Research on Acoustic Environment during Rocket Launch, Theoretical and Applied Mechanics Japan, Vol.56, 2008, pp.463-469. JOI:JST.JSTAGE/nctam/56.463
  70. –k‘ºŒ\ˆêCX_ˆêC‰ÔˆäŸËC–î‹´–±C¬àVŒ[ŽfC’†‘º‰À˜NF@TSTOƒI[ƒrƒ^Œ`ó‚Ì’´‰¹‘¬‹ó—ÍŠ±Â—¬‚êê‚ւ̉e‹¿C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.55 (2007)CNo.646, pp.509-515Ddoi:10.2322/jjsass.55.509 JOI:JST.JSTAGE/jjsass/55.509
  71. ¼–ì“Ö—mCÎì‘¸ŽjC–k‘ºŒ\ˆêC’†‘º‰À˜NF@‹É’´‰¹‘¬TSTO‹ó—ÍŠ±Â—¬‚êê‚É‚¨‚¯‚é2•¨‘ÌŠÔŠu‚Ì‹ó—͉Á”M—¦‚ւ̉e‹¿C“ú–{q‹ó‰F’ˆŠw‰ï˜_•¶WCVol.53 (2005), No.622, pp.503-509Ddoi:10.2322/jjsass.53.503 JOI:JST.JSTAGE/jjsass/53.503

    (*) Corresponding Author
ŽóÜE•\²
  1. —ߘa4”N“x@‰¡•l‘—§‘åŠw—DGŒ¤‹†ŽÒÜ@—DGŒ¤‹†ÜC –k‘ºŒ\ˆê, 2023.
  2. —ߘa4”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ‰ÈŠw‹ZpÜiŒ¤‹†•”–åjC “ˆ‰pŽuC–k‘ºŒ\ˆê@CwƒƒPƒbƒg‚âŽÔ‚ÌŠJ”­‚ð—eˆÕ‚É‚µ‚½¢ŠE•W€—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†x, 2022.
  3. ‘æ30‰ñi—ߘa2”N“xj“ú–{q‹ó‰F’ˆŠw‰ï ‹ZpÜEŠî‘b‹Zp•”–åC “ˆ‰pŽuC–k‘ºŒ\ˆê@Cw‘S‘¬“x—¬‘ÌŒvŽZƒXƒL[ƒ€SLAU‚ÌŠJ”­x, 2021.
  4. “ú–{‹@ŠBŠw‰ï@‰F’ˆHŠw•”–å@‘æ97Šúi2019”N“xjˆê”Ê•\²ƒXƒy[ƒXƒtƒƒ“ƒeƒBƒACuÄŽg—p‚•p“x‰F’ˆ—A‘—ƒVƒXƒeƒ€v‹ó—ÍŒ¤‹†ƒ`[ƒ€ i‘ã•\F–k‘ºŒ\ˆêC–ì’†‘jC2020.
  5. “ú–{‹@ŠBŠw‰ï@—¬‘̍HŠw•”–å@‘æ97Šúi2019”N“xjƒtƒƒ“ƒeƒBƒA•\²C –k‘ºŒ\ˆê, 2019.
  6. •½¬31”N“x ‰ÈŠw‹Zp•ª–ì‚Ì•¶•”‰ÈŠw‘åb•\² ŽáŽè‰ÈŠwŽÒÜC –k‘ºŒ\ˆê@w‘ŽYƒƒPƒbƒgŠJ”­‚ÉŽ‘‚·‚éˆÀ’è‚Ő³Šm‚È—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†x, 2019.
  7. •½¬30”N“x@‰¡•l‘—§‘åŠw—DGŒ¤‹†ŽÒÜ@§—ãÜC –k‘ºŒ\ˆê, 2019.
  8. “ú–{—¬‘Ì—ÍŠw‰ï 2017”N“xŠw‰ïÜ —³–åÜC –k‘ºŒ\ˆê@wÕŒ‚”g‚É‚¨‚¢‚ĈÀ’è‚©‚‚¸“x‚È—¬‘ÌŒvŽZŽè–@‚Ì’ñˆÄx, 2018.
  9. ‘æ10‰ñ‰F’ˆ‰ÈŠw§—ãÜi‰F’ˆHŠw•ª–ìjC –k‘ºŒ\ˆê@wÕŒ‚”g‚ðˆÀ’è‚ɂƂ炦‚é—¬‘ÌŒvŽZ–@‚Ì’ñˆÄ‚Æ‚»‚ê‚ð—p‚¢‚½ƒCƒvƒVƒƒ“ƒƒPƒbƒg‚Ì‹ó—Í“Á«‚̉𖾁x, 2018.
  10. ‘æ21‰ñi•½¬23”N“xj“ú–{q‹ó‰F’ˆŠw‰ï§—ãÜC –k‘ºŒ\ˆê@iŠÖ˜A˜_•¶F@w‹É’´‰¹‘¬ÕŒ‚”gŠ±Â—¬‚ê‚É‚¨‚¯‚é‹ó—͉Á”M‚̐”’l‰ðÍxj, 2012.
Žw“±Šw¶‚ÌŽóÜ
  1. 2023”N06ŒŽ09“ú: ŒÃàVCThe 34th ISTS (International Symposium on Space Technology and Science)‚É‚Ä Japanese Rocket Society Award‚ðŽóÜ
  2. 2022”N06ŒŽ: ŒÃàVC2022 AIAA Aviation Forum and Exposition‚É‚ÄAIAA Computational Fluid Dynamics Best Student Paper Competition 2nd Place‚ðŽóÜ
  3. 2022”N06ŒŽ: •Ÿ“ˆC2022 AIAA Aviation Forum and Exposition‚É‚ÄAIAA Computational Fluid Dynamics Best Student Paper Competition 1st Place‚ðŽóÜ
  4. 2022”N03ŒŽ24“úF“›ˆäC—ߘa3”N“x—HŠw•{‹@ŠBHŠwƒ†ƒjƒbƒgŠwˆÊ‹LŽö—^Ž®‚É‚Ä“ú–{‹@ŠBŠw‰ïŽO‰YÜ‚ðŽóÜ
  5. 2022”N03ŒŽ24“úFŠÔX‰ºC—ߘa3”N“x—HŠw•{‹@ŠBHŠwƒ†ƒjƒbƒgŠwˆÊ‹LŽö—^Ž®‚É‚Ä•\²
  6. 2021”N03ŒŽ25“úFŽRŒûC—HŠw•”’·•\²
  7. 2021”N02ŒŽ28“úFŽRŒûC‘æ10‰ñƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒiƒIƒ“ƒ‰ƒCƒ“j‚É‚ÄŽQ‰ÁŠé‹ÆÜiƒtƒ@[ƒEƒFƒCÜj‚ðŽóÜ
  8. 2020”N12ŒŽ10“úF“›ˆäC‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  9. 2020”N03ŒŽ24“úFûü–؁C—ߘaŒ³”N“x—HŠw•{‹@ŠBHŠwƒ†ƒjƒbƒgŠwˆÊ‹LŽö—^Ž®‚É‚Ä“ú–{‹@ŠBŠw‰ïŽO‰YÜ‚ðŽóÜ
  10. 2019”N11ŒŽ07“úFûü–؁C‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  11. 2019”N07ŒŽ15“úF“¡–{C32nd International Symposium on Shock Waves (ISSW32)‚É‚ÄStudent Competition Award‚ðŽóÜ
  12. 2019”N03ŒŽ26“úF“¡–{C•½¬30”N“x—HŠw•”’·•\²
  13. 2019”N03ŒŽ26“úF‰Í“àC•½¬30”N“xHŠw•{‹@ŠBƒVƒXƒeƒ€HŠwƒR[ƒXŠwˆÊ‹LŽö—^Ž®‚É‚Ä•\²
  14. 2018”N08ŒŽ27“úF“¡–{C‘æ50‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ36‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€i—ªÌF—¬—ÍANSSj‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  15. 2018”N08ŒŽ19“úF‰Í“àCJSSUME2018‚É‚ÄExcellent Presentation Award‚ðŽóÜ
  16. 2018”N07ŒŽ12“úFûü–؁C15th International Space Conference of Pacific-basin Societies (ISCOPS)—Montreal, Canada‚É‚ÄŒ¤‹†”­•\‚ðs‚¢CThe first prize in the Masters category‚ðŽóÜ
  17. 2018”N04ŒŽ20“úF‰Í“àC“ú–{q‹ó‰F’ˆŠw‰ï‘æ49Šú”N‰ïu‰‰‰ï‚É‚Ä—DG”­•\Ü‚ðŽóÜ
  18. 2018”N03ŒŽ04“úF“¡–{CuƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒEƒRƒ“ƒ\[ƒVƒAƒ€§—ãÜ@ƒOƒbƒhƒpƒtƒH[ƒ}ƒ“ƒXÜv‚ðŽóÜ
ƒƒ“ƒo[‚Æ‚µ‚Ä‚ÌŽóÜ
  1. “ú–{HŠw‹³ˆç‹¦‰ï@‘æ24‰ñi2019”N“xjHŠw‹³ˆçÜi•¶•”‰ÈŠw‘åbÜj Cuo‚éY‚ðL‚΂·Šw•”‹³ˆçƒvƒƒOƒ‰ƒ€ROUTEiResearch Opportunities for UndergraduaTEsj‚ÌŽÀ‘HvC‰¡•l‘—§‘åŠw—HŠw•”i‘ã•\F•Ÿ“c~“ñjC2020.
  2. “ú–{‹@ŠBŠw‰ï@2019”N“x@“ú–{‹@ŠBŠw‰ï‹³ˆçÜ CuŠw•”‚P”N¶‚©‚çÅæ’[Œ¤‹†‚ÉŽQ‰Á‚Å‚«‚éROUTEkResearch Opportunities for UndergraduaTEslƒvƒƒWƒFƒNƒg‚ÌŽÀ‘HvC‰¡•l‘—§‘åŠwE‹@ŠBHŠw‹³ˆç ƒvƒƒOƒ‰ƒ€i‘ã•\FŠÛ”öº“ñjC2020.
µ‘ҍu‰‰EƒZƒ~ƒi[EƒAƒEƒgƒŠ[ƒ`Šˆ“®iŽÐ‰ï‚ւ̍vŒ£j
  1. TVŽæÞio‰‰jF@u’T‹‚ÌŠK’ivC2022”N02ŒŽ10“úC19“úCƒeƒŒƒr“Œ‹ž^BSƒeƒŒ“ŒD
  2. gˆ³k«—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†‚ƍ‘ŽYƒƒPƒbƒgŠJ”­‚ւ̉ž—pCh “ú–{‹@ŠBŠw‰ï@2021”N“x”NŽŸ‘å‰ï@“Á•ÊsŽ–Šé‰æuæ’[‹ZpƒtƒH[ƒ‰ƒ€vF19100 ‰F’ˆHŠw•ª–ì‚É‚¨‚¯‚鐔’l‰ðÍ‹Zp‚Ì“WŠJm‰F’ˆHŠw•”–åCŒvŽZ—ÍŠw•”–åŠé‰æn[F191-03] iƒIƒ“ƒ‰ƒCƒ“C2021”N09ŒŽ07“új
  3. g—LŒÀ‘̐ϖ@‚É‚¨‚¯‚éÃŽ~ÕŒ‚”g‚¨‚æ‚шړ®ÕŒ‚”g•ßŠl‚ÌŒ»ó‚ƉۑèCh “ú–{‹@ŠBŠw‰ï@RC286u—¬‚ê‚̐æi“IŒv‘ªEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“–@‚Æ—¬‘̏î•ñ‚̍‚“x—˜—p‚ÉŠÖ‚·‚錤‹†•ª‰È‰ïviƒIƒ“ƒ‰ƒCƒ“C2021”N08ŒŽ31“új
  4. hÕŒ‚”g‚ðˆÀ’è‚©‚‚¸“x‚É‰ð‚­V‚µ‚¢”’l‰ð–@huSTEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“Œ¤‹†‰ïEKDKƒVƒ“ƒ|ƒWƒEƒ€ ‡“¯Œ¤‹†‰ïv@µ‘ҍu‰‰iƒIƒ“ƒ‰ƒCƒ“C2021”N03ŒŽ31“új
  5. gˆ³k«—¬‘ÌŒvŽZ–@‚ÌŒ¤‹†‚ƃ‚ƒm‚­‚è‚ւ̍vŒ£ChŒö‰vŽÐ’c–@l Ž©“®ŽÔ‹Zp‰ï@CFD‹Zp•”–åˆÏˆõ‰ïuu‰‰viƒIƒ“ƒ‰ƒCƒ“C2021”N01ŒŽ08“új
  6. Š”Ž®‰ïŽÐƒ‰ƒCƒZƒ“ƒXƒAƒJƒfƒ~[wŒn“E•ª–ì•Êî•ñŽ 5. —EHŠwAŠÂ‹«Aî•ñA’ʐMA‹@ŠBAŽ©“®ŽÔAŒš’zA”_ŠwAƒoƒCƒIƒeƒNƒmƒƒW[i¶–½HŠwŠÖ˜Aj •Ò xiŽæÞ‹LŽ–ŒfÚji2021”Nj
  7. g‹ó”ò‚ÔƒNƒ‹ƒ}‚ÌŽÀŒ»‚ÉŒü‚¯‚½‹ó—͐݌v‚QCh u‘æ141‰ñFPS“Á•ÊŒ¤C‰ïviƒIƒ“ƒ‰ƒCƒ“C2020”N11ŒŽ30“új
  8. ‚Ý‚ç‚¢‚Ô‚Á‚­i‰Í‡mE“àŠt•{‚Ȃǁj‚É‚²Ð‰î‚¢‚½‚¾‚«‚Ü‚µ‚½iWeb‹LŽ–ŒfÚjD i2020”N9ŒŽj
  9. TVŽæÞF@uƒX[ƒp[Jƒ`ƒƒƒ“ƒlƒ‹vC”—£‰Q‚ÉŠÖ‚·‚é‰ðà“à—e‚ªÐ‰î‚³‚ê‚Ü‚µ‚½D2020”N07ŒŽ15“úCƒeƒŒƒr’©“úD
  10. TVŽæÞio‰‰jF@uVEî•ñ7daysƒjƒ…[ƒXƒLƒƒƒXƒ^[vCŽÔ‘ÌŒã•û‚Ì”—£‰Q‚ɂ‚¢‚ĉðàC2020”N07ŒŽ11“úCTBSDiTBSuNƒXƒ^vC2020”N07ŒŽ13“úC‚É‚¨‚¢‚Ä‚à‰ðà‰f‘œ‚ªÄ“xŽg—p‚³‚ê‚Ü‚µ‚½Dj
  11. —ߘaŒ³”N“x‰ÈŠwŒ¤‹†”¬Ž–‹Æi‰ÈŠwŒ¤‹†”ï•â•‹àjiŒ¤‹†¬‰ÊŒöŠJ‘£i”ïjuŒ¤‹†¬‰ÊŒöŠJ”­•\i‚aji‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚ց`‚j‚`‚j‚d‚m‚g‚hjvg”òãđ́i‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚ɂ́`hi‰¡•l‘—§‘åŠwC2019”N8ŒŽ8“új
  12. –²ƒiƒrTALKu‹ó‹C‚Ì—Í‚Å‹ó‚ցC‰F’ˆ‚ցIviƒ|[ƒgƒƒbƒZ‚È‚²‚âC–¼ŒÃ‰®ŽsC2019”N7ŒŽ20“új
  13. Top ResearchersiWeb‹LŽ–ŒfÚj i2019”N7ŒŽj
  14. TVŽæÞio‰‰jF@NHK@uƒjƒ…[ƒXƒEƒHƒbƒ`9vCwu‹ó”ò‚ÔƒNƒ‹ƒ}vŽÀ—p‰»‚Ö ‰^qƒ‹[ƒ‹‚â‹ZpŠJ”­‚È‚Ç‹c˜_xC2018”N8ŒŽ29“úCNHKD
  15. “ú–{ŠwpU‹»‰ïu¬E’†E‚Z¶‚Ì‚½‚߂̃vƒƒOƒ‰ƒ€@‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚ց`KAKENHIiŒ¤‹†¬‰Ê‚̎ЉïŠÒŒ³E•‹yŽ–‹Æjvg”òãđ́i‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚ɂ́`hi‰¡•l‘—§‘åŠwC2018”N8ŒŽ24“új
  16. gÅVƒƒPƒbƒg‚Æ‹ó‹C—ÍŠwCh uƒƒNƒgƒTƒCƒGƒ“ƒXƒŒƒNƒ`ƒƒ[vi‘½–€˜Z“s‰ÈŠwŠÙC¼“Œ‹žŽsC2018”N06ŒŽ02“új
  17. gÅVƒƒPƒbƒg‚Ì‹ó‹C—ÍŠwŒ¤‹†Ch ‰¡•l‘—§‘åŠw@–¼‹³A”ü‰ïu‘æ29‰ñƒuƒ‰ƒbƒVƒ…ƒAƒbƒvŒ¤C‰ïvi‚©‚È‚ª‚í˜J“­ƒvƒ‰ƒUC‰¡•lŽsC2018”N01ŒŽ27“új
  18. g”òãđ̂̂ӂµ‚¬Ch _“ސ쌧—§Œõ—ˍ‚“™ŠwZ@o’£u‹`uKoryo@Science@Cafe‡Uvi_“ސ쌧—§Œõ—ˍ‚“™ŠwZC‰¡•lŽsC2017”N12ŒŽ25“új
  19. "Hypersonic Flow and Multiphase Flow Computations by Finite Volume Method," FlowPAC Seminar (University of Notre Dame, 2017”N09ŒŽ15“új
  20. "SLAU2 and Post Limiter for (Unlimited) Second-Order Flow Simulations on Unstructured Grids," 92nd NIA CFD SeminariNational Institute of Aerospace, 2017”N08ŒŽ18“új
  21. "Recent Progress and Future Prospects of Two-Fluid AUSM in Multiphase Flow Simulations," EMN (Energy Materials Nanotechnology) Meeting On Droplets 2016, San Sebastian, Spain, May 9-13, 2016.
  22. gÕŒ‚”gˆÙí‰ð‚̈ꎟŒ³«‚Æ‘½ŽŸŒ³«‚ɂ‚¢‚āCh@JAXAŒ¤‹†ŠJ”­–{•”@‘æ1‰ñJNƒZƒ~ƒi[ iJAXAŒ¤‹†ŠJ”­–{•”C“Œ‹ž“s’²•zŽsC2013”N02ŒŽjD
  23. gÕŒ‚”g•s˜A‘±–ʂ̐”’l“I•ß‘¨‚ƈُí‰ð‚ɂ‚¢‚āCh@—‰»ŠwŒ¤‹†Š@ACCC‘Š‡ƒ`[ƒ€u—Œ¤ƒZƒ~ƒi[v i—‰»ŠwŒ¤‹†Š “Œ‹ž˜A—Ž––±ŠC“Œ‹ž“sç‘ã“c‹æC2013”N01ŒŽjD
  24. gƒJ[ƒoƒ“ƒNƒ‹Œ»Û‚ɂ‚¢‚āCh ÕŒ‚”g•sˆÀ’萫Œ¤‹†‰ï i“Œ–k‘åŠwÂ—tŽRƒLƒƒƒ“ƒpƒXCå‘äŽsÂ—t‹æC2011”N09ŒŽjD
  25. g”’l—¬‘Ì—ÍŠw(CFD)‚ÌŒ¤‹†‚ƉF’ˆ‹@ŠJ”­‚ւ̉ž—pCh “Œ‹ž‘åŠw‘åŠw‰@@”—‰ÈŠwŒ¤‹†‰È^î•ñ—HŠwŒnŒ¤‹†‰È u”’l‰ðÍƒZƒ~ƒi[v#21 i“Œ‹ž‘åŠw‹îêƒLƒƒƒ“ƒpƒXC–ڍ•‹æ‹îêC2011”N06ŒŽjD
  26. gq‹ó‰F’ˆCFD‚É‚¨‚¯‚鐔’l—¬‘©ŠÖ”‚ÌŒ¤‹†‚ƉF’ˆ‹@‹ó—͉ðÍCh –¾Ž¡‘åŠwæ’[”—‰ÈŠwƒCƒ“ƒXƒeƒBƒeƒ…[ƒg@‘æ8‰ñŒ»Û”—ŽáŽèƒVƒ“ƒ|ƒWƒEƒ€ uq‹ó‹@‚̐”—@|—¬‘̃‚ƒfƒ‹‚Ɛ”’l‰ðÍ|vi–¾Ž¡‘åŠw¶“cƒLƒƒƒ“ƒpƒXCìèŽs‘½–€‹æC2011”N1ŒŽjD
  27. ŽGŽŽæÞiƒCƒ“ƒ^ƒrƒ…[j‹LŽ–ŒfÚF@‚¨ŽdŽ–Œ©•·˜^Cw‘ˆî“cƒAƒJƒfƒ~[’ñŒg@’†ŠwŽóŒ±@ƒTƒNƒZƒX12 2011”N3E4ŒŽ†xCpp.14-16, ŽÐ‰ï•]˜_ŽÐD
‹ß”N‚̍‘ÛŠw‰ï”­•\
  1. › Fukushima, G., Kitamura, K., and Sasoh, A.: Improvement of Very Weak Shock Capturing Using Hybrid MUSCL-THINC, T11-0373, The 34th International Symposium on Shock Waves (ISSW34), Daegu, Korea, July 16-21, 2023.
  2. › Kawai, K., and Kitamura, K.: Computational fluid analysis on multiple flat plates as small distributed aerodynamic brake for high-speed railways, 2-08-2-04, ASME-JSME-KSME Fluids Engineering Division 2023 (AJKFED2023), Osaka, Japan, July 11, 2023.
  3. › Mamashita, T., Tamai, R., Muto, T., Kitamura, K., and Nonaka, S.: Numerical Analysis and Wind Tunnel Testing of Experimental Reusable Vehicle RV-X Aerodynamics at 90‹ Angle-of-Attack, 2023-g-19, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  4. › Furusawa, Y., Kitamura, K., Ikami, T., Okawa, M., and Nagai, H.: Propeller Scale Effect on Fixed Wing within Propeller Slipstream at Low Reynolds Number, 2023-e-42, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  5. › Suzuki, K., Mamashita, T., Furusawa, Y., and Kitamura, K.: Grid Resolution Study on Numerical Analysis of PropellerWing Interaction, 2023-e-38, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  6. › Tsukamoto, Y., and Kitamura, K.: Comparison of Leading Edge VGs on SC(2)-0518 and OAT15A Airfoils for Transonic Buffet Suppression, 2023-e-36, The 34th ISTS (International Symposium on Space Technology and Science), Kurume, Japan, Jun-08-2023.
  7. › Nimura, K., Tsutsui, F., Kitamura, K., and Nonaka, S.: Aerodynamic Effects of Surface Protuberance Sizes on Slender-Bodied Supersonic Vehicle, AIAA 2023-0241, AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online. https://arc.aiaa.org/doi/10.2514/6.2023-0241
  8. › Tsukamoto, Y., and Kitamura, K.: Improvements of Vortex Generator for Transonic Buffet Suppression over Supercritical Airfoil, OS21-24, 19th International Conference on Flow Dynamics (ICFD2022), Sendai, Japan & Online, Nov-10-2022.
  9. › Furusawa, Y., Kitamura, K., Ikami, T., Okawa, M., and Nagai, H.: Numerical Study on Propeller Scale Effect on Flow Field around Blade, OS21-31, 19th International Conference on Flow Dynamics (ICFD2022), Sendai, Japan & Online, Nov-10-2022.
  10. › Kitamura, K., Furusawa, Y., Ikami, T., Okawa, M., Fujita, K., and Nagai, H.: Propeller-Slipstream/Main-Wing Aerodynamic Interaction for Mars Airplane, Part II, CRF-47, 19th International Conference on Flow Dynamics (ICFD2022), Sendai, Japan & Online, Nov-10-2022.
  11. › Nakahara, K., Kitamura, K., and Nonaka, S.: Numerical Study on L/D Improvement of Slender Body by Close-Coupled-Delta-Wing-Type Aerodynamic Devices, S14-1, The 2022 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2022), Niigata, Japan & Virtual, Oct-12-2022.
  12. › Kitamura, K., Yasumura, Y., Furusawa, Y., Kanamori, M., and Hashimoto, A.: Time-Interval Study on NASA-CRM Low-Speed Unsteady Flow Computation, S42-1, The 2022 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2022), Niigata, Japan & Virtual, Oct-13-2022.
  13. › Mamashita, T., and Kitamura, K.: Application of A Posteriori Slope Limiter to Ideal Magnetohydrodynamics Simulation, No. 2117 in MS0729 Advances in High-Order Methods for Computational Fluid Dynamics, WCCM-APCOM YOKOHAMA 2022, Virtual, Aug. 2022.
  14. › Furusawa, Y., and Kitamura, K.: Roles of Multi-Dimensional Velocity Components in All-Speed Numerical Flux SLAU, AIAA 2022-4033, AIAA AVIATION 2022 Forum, June 27-July 1, 2022, Chicago, IL & Virtual. https://doi.org/10.2514/6.2022-4033 [AIAA Computational Fluid Dynamics Best Student Paper Competition 2nd Place]
  15. › Fukushima, G., Kitamura, K., and Sasoh, A.: On Peculiar Behaviors of Captured Very-Weak Moving Shockwaves, AIAA 2022-4127, AIAA AVIATION 2022 Forum, June 27-July 1, 2022, Chicago, IL & Virtual. https://doi.org/10.2514/6.2022-4127 [AIAA Computational Fluid Dynamics Best Student Paper Competition 1st Place]
  16. › Aono, J., Kitamura, K., and Shimizu, T.: NUMERICAL STUDY ON AIRBORNE DROPLETS USING TWO-FLUID MODELLED MULTIPHASE FLOW SIMULATIONS, ICJWSF2022-I07, The 7th International Conference on Jets, Wakes and Separated Flows 2022, Full On-line, March 15-17, 2022.
  17. › Mamashita, T., Muto, T., Kitamura, K., and Nonaka, S.: Numerical Analysis on Axial Force Characteristics of Reusable Launch Vehicle during Return Phase, 2022-g-01, 33rd International Symposium on Space Technology and Science (ISTS), all-online, Feb-26 - Mar-04, 2022.
  18. › Tsutsui, F., Kitamura, K., and Nonaka, S.: Effects of RANS Turbulence Models on Aerodynamics of Slender-Bodied Launch Vehicles with Protuberance, P00155, 12th Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Jeju, South Korea & Virtual, Nov-15-2021.
  19. › Kitamura, K., Furusawa, Y., Ikami, T., Fujita, K., and Nagai, H.: Propeller-Slipstream/Main-Wing Aerodynamic Interaction for Mars Airplane, CRF-34, 18th International Conference on Flow Dynamics (ICFD2021), Online, Oct-29-2021.
  20. › Furusawa, Y., Kitamura, K., and Nagai, H.: Numerical Study on Mach Number Effects of Propeller on Propeller-Wing Interaction, OS20-1, 18th International Conference on Flow Dynamics (ICFD2021), Online, Oct-27-2021.
  21. › Mamashita, T., Kitamura, K., and Minoshima, T.: SLAU2-MHD for Low Mach Magnetohydrodynamics (MHD) Simulations, AIAA 2021-2730, AIAA AVIATION 2021 FORUM, August 2-6, 2021, VIRTUAL EVENT. https://doi.org/10.2514/6.2021-2730
  22. › Tsutsui, F., Takagi, Y., Takimoto, H., Kitamura, K., and Nonaka, S.: Numerical Analysis on Aerodynamic Characteristics of Slender Body with Asymmetric Double Protuberance, AIAA-2021-0137, AIAA SciTech Forum 2021, Virtual Event, Jan. 2021.
  23. › Furusawa, Y., Kitamura, K., Nagai, H., and Oyama, A.: Numerical Investigation on Three-Dimensional Flow Structure over Fixed Wing within Propeller Slipstream, OS18-31, Seventeenth International Conference on Flow Dynamics (ICFD2020), Online, Oct. 2020.
  24. › Furusawa, Y., and Kitamura, K.: Unsteady Numerical Simulation on Angle-of-Attack Effects of Tractor-Propeller/Wing and Pusher-Propeller/Wing Interactions, AIAA 2020-1030, AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020.
  25. › Akamine, M., Yamauchi, S., Nonaka, S., Takagi, Y., Takimoto, H., and Kitamura, K.: Tomographic Reconstruction from Schlieren Images of Slender Body with Asymmetric Protuberances, AIAA 2020-0028, AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020.
  26. › Kitamura, K., Ogawa, S., Takimoto, H., Kanamori, M., and Hashimoto, A.: Low Speed Buffet Simulation using High-Resolution Delayed-DES with Improved LES/RANS Transition, Asia Pacific International Symposium on Aerospace Technology (APISAT) 2019, Surfers Paradise Marriott Resort, Gold Coast, 4-6 December 2019.
  27. › Aono, J. and Kitamura, K.: Numerical Investigation of AUSM-family Schemes Dissipation for Compressible Multiphase Flow Simulations, (OR-09-0367), 32nd International Symposium on Shock Waves (ISSW32), National University of Singapore, Singapore, July 18, 2019.
  28. › Kitamura, K. and Shima, E.: Numerical Survey on Shock Anomalies from Moving Shocks, (OR-11-0253), 32nd International Symposium on Shock Waves (ISSW32), National University of Singapore, Singapore, July 17, 2019.
  29. › Fujimoto, T. and Kitamura, K.: Efficient and Accurate Shock Sensor for CFD Solutions on Curvilinear Grids, (OR-11-0307), 32nd International Symposium on Shock Waves (ISSW32), National University of Singapore, Singapore, July 15, 2019.
  30. › Ogawa, S. and Kitamura, K.: Improvement of the Aerodynamic Characteristics of Wing by Moving Surface Method at Low Reynolds Number, 2019-e-48, 32nd International Symposium on Space Technology and Science (ISTS), Fukui, Japan, Jun. 15-21, 2019.
  31. › Harada, T., Kawauchi, K., Kitamura, K., and Nonaka, S.: Side Force Characteristics of Supersonic Flight Vehicle Equipped with Asymmetric Protuberance, AIAA Paper 2019-0299, AIAA SciTech Forum 2019, San Diego, CA, Jan. 2019.
  32. › Kawauchi, K., Harada, T., Kitamura, K., and Nonaka, S.: Wind Tunnel Experiment on Slender Body Aerodynamics with Asymmetric Protuberances at Mach 1.5, 15th Joint Symposium between Sister Universities in Mechanical Engineering (JSSUME2018 HAMAMATSU), Shizuoka University, Hamamatsu, Japan, Aug-19-2018.
  33. › Fukumoto, K., Kitamura, K., Mori, K., and Kurata, R.: The Influences of Band-Support-Structure of Rigid Supersonic Parachute on Its Surface Flowfield and Drag Coefficient, 15th Joint Symposium between Sister Universities in Mechanical Engineering (JSSUME2018 HAMAMATSU), Shizuoka University, Hamamatsu, Japan, Aug-19-2018.
  34. › Takagi, Y., Aogaki, T., Kitamura, K., and Nonaka, S.: Numerical Study on Aerodynamic Improvement of Slender-bodied Reusable Rocket by Fins and Vortex Flaps, 15th International Space Conference of Pacific-basin Societies (ISCOPS), Montreal, Canada, Jul. 2018.
  35. › Fujimoto, T., Kawasaki, T., and Kitamura, K.: Simpler Method of Shock Wave Detection by Using Canny Method, AIAA-2018-4274, AIAA AVIATION Forum 2018, Atlanta, GA, Jun-29-2018.
  36. › Kitamura, K., Aogaki, T., Inatomi, A., Fukumoto, K., Takahama, T., and Hashimoto, A.: Post Limiters and Simple Dirty-Cell Detection for 3D, Unstructured,(Unlimited) Aerodynamic Simulations, AIAA-2018-4271, AIAA AVIATION Forum 2018, Atlanta, GA, Jun-29-2018.
  37. Shima, E., and › Kitamura, K.: Mach Uniform All-Speed Compressible CFD Solver Unifying the Implicit MUSCL and SMAC, AIAA-2018-4161, AIAA AVIATION Forum 2018, Atlanta, GA, Jun-29-2018.
  38. › Kitamura, K., and Balsara, D.S.: Hybridized SLAU2-HLLI for magnetohydrodynamics simulations, ECCM-ECFD (7th European Conference on Computational Fluid Dynamics (ECFD 7)) 2018, Glasgow, UK, Jun-13 2018.
  39. › Shima, E., and Kitamura, K.: A SMAC like novel efficient implicit MUSCL method for all Mach number, ECCM-ECFD 2018, Glasgow, UK, Jun-13 2018.

    ¦@›‚Í”­•\ŽÒD
‹ß”N‚̍‘“àŠw‰ï”­•\
  1. › •Ÿ“ˆ Šx, –k‘ºŒ\ˆê(‰¡‘‘å) ,gA posterioriŒù”z§ŒÀŽè–@uƒ|ƒXƒgƒŠƒ~ƒ^v‚ÆŠE–ʕߊl–@THINC‚ð‘g‚ݍ‡‚킹‚½˜A‘±E•s˜A‘±—¬‚ê‚ð‚‰ð‘œ‚·‚éMUSCLƒ^ƒCƒv‚̉ð–@hC‘æ55‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ41‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjCJSASS-2023-2028-A-1D02i‘—§ƒIƒŠƒ“ƒsƒbƒN‹L”OÂ­”N‘‡ƒZƒ“ƒ^[C “Œ‹ž“sa’J‹æC2023”N07ŒŽ12“újD
  2. › Â–ì~–çC–k‘ºŒ\ˆêi‰¡‘‘åjCg…’†‚É‚¨‚¯‚é‘ȉ~Œ^‹C–A‚Ɛ‚’¼ÕŒ‚”gŠ±Â‚̐”’lŒvŽZCh(ˆêŽÐ) ‰Î–òŠw‰ï 2023”N“xt‹GŒ¤‹†”­•\‰ïCSession 1-1i‹@ŠBU‹»‰ïŠÙC“Œ‹ž“s`‹æC2023”N04ŒŽ18“újD
  3. › –k‘ºŒ\ˆêi‰¡‘‘åjCg‰æ‘œˆ—‚ð‰ž—p‚µ‚½‘½ŽŸŒ³ÕŒ‚”gŒŸ’mŒ^ CFD Žè–@‚ÌŒŸ“¢i‘æ2•ñF§ŒÀŠÖ”jCh(ˆêŽÐ) ‰Î–òŠw‰ï 2023”N“xt‹GŒ¤‹†”­•\‰ïCSession 6-19i‹@ŠBU‹»‰ïŠÙC“Œ‹ž“s`‹æC2023”N04ŒŽ18“újD
  4. › ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å)Cg’჌ƒCƒmƒ‹ƒY”(4,900 … Re … 50,000)‚Ì—ƒŒ^Žü‚è—¬‚ê‚É‚¨‚¯‚闐—¬‘JˆÚƒ‚ƒfƒ‹‚̐«”\”äŠrCh“ú–{q‹ó‰F’ˆŠw‰ï ‘æ54Šú ”N‰ïu‰‰‰ïC1D07i“ú–{‰ÈŠw–¢—ˆŠÙC“Œ‹ž“s]“Œ‹æC2023”N04ŒŽ13“újD
  5. › •Ÿ“ˆ Šx(–¼‘å) , –k‘ºŒ\ˆê(‰¡‘‘å) , ²@ ÍO(–¼‘å)CgƒnƒCƒuƒŠƒbƒhMUSCL-THINC–@‚É‚æ‚鈳k«—¬‘ÌŒvŽZ«”\‚ÌŒüãCh2022”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C1A1-2iŽY‹Æ‹Zp‘‡Œ¤‹†ŠC‚‚­‚ÎŽsC2023”N03ŒŽ08“újD
  6. › •Ÿ“ˆ Šx(–¼‘å) , –k‘ºŒ\ˆê(‰¡‘‘å) , ²@ ÍO(–¼‘å)Cg”÷ŽãÕŒ‚”g‚ðƒVƒƒ[ƒv‚É‘¨‚¦‚éƒnƒCƒuƒŠƒbƒhMUSCL-THINC–@Ch‘æ36‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB09-2iƒIƒ“ƒ‰ƒCƒ“C2022”N12ŒŽ16“újD
  7. › ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å)Cgˆ³k«‘S‘¬“xƒXƒL[ƒ€‚É‚¨‚¯‚鑽ŽŸŒ³‘¬“x¬•ª‚ÌŒvŽZˆÀ’萫‚ւ̉e‹¿i‘æ2•ñjF‚æ‚èL”͂ȃ}ƒbƒn”ˆæ‚Å‚Ì’²¸Ch‘æ36‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB09-4iƒIƒ“ƒ‰ƒCƒ“C2022”N12ŒŽ16“újD
  8. Z –{–Ø ãČáC“ñ‘º ˜aŽ÷CáÁ•¿ FŠîC–k‘º Œ\ˆêi‰¡‘‘åjC–ì’† ‘iJAXAjCg“Ë‹N‚Ì‘å‚«‚³‚É‚æ‚é×’·•¨‘̉¡—Í“Á«‚ւ̉e‹¿‚ɂ‚¢‚Ä‚Ì‘J‰¹‘¬•—“´ŽŽŒ±Ch—ߘa4”N“x ‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, ISAS2022-SFMA-037i‘Š–ÍŒ´ŽsC‰F’ˆ‰ÈŠwŒ¤‹†ŠC2022”N12ŒŽ13“újD
  9. Z áÁ•¿FŠîC–k‘ºŒ\ˆêi‰¡‘‘åjCgƒLƒƒƒmƒs[Œ`ó‚̈قȂ钴‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg“àŠOˆ³—Í•Ï“®‚̐”’l—¬‘̉ðÍ Ch P093C‘æ66‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïiŒF–{ŽsC2022”N11ŒŽ02“új
  10. Z ŠÔX‰º ’qL(‰¡‘‘å), ‹Êˆä —º‘½, •“¡ ’q‘¾˜N(“Œ‘å), –k‘º Œ\ˆê(‰¡‘‘å), –ì’† ‘(JAXA)CgÄŽg—pƒƒPƒbƒgŽÀŒ±‹@RV-X‚ÌŒ}Šp90“x‚É‚¨‚¯‚éŽÀ”òsƒXƒP[ƒ‹”’l‰ðÍCh‘æ66‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïiŒF–{ŽsC2022”N11ŒŽ01“új
  11. Z ŠÔX‰º ’qLC–k‘ºŒ\ˆê (‰¡‘‘å)Cga posterioriŒù”z§ŒÀŽè–@uƒ|ƒXƒgƒŠƒ~ƒ^v‚ÌŽ¥‹C—¬‘Ì—ÍŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Ö‚Ì“K—pCh“ú–{—¬‘Ì—ÍŠw‰ï@”N‰ï2022i‹ž“s‘åŠwC‹ž“sŽsC2022”N09ŒŽ28“újD
  12. › “ñ‘º ˜aŽ÷, –k‘º Œ\ˆê, “›ˆä Žj–ç (‰¡‘‘å), –ì’† ‘ (JAXA)Cg×’·•¨‘Ì•\–Ê“Ë‹N‚Ì‘å‚«‚³‚ª’´‰¹‘¬ˆæ‚ʼn¡—Í“Á«‚É‹y‚Ú‚·‰e‹¿‚̐”’l‰ðÍCh‘æ54‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ40‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1C03iƒAƒC[ƒiF‚¢‚í‚ÄŒ§–¯î•ñŒð—¬ƒZƒ“ƒ^[C·‰ªŽsC2022”N06ŒŽ29“újD
  13. › ’‡Œ´ GÆ, –k‘º Œ\ˆêi‰¡‘‘åj, –ì’† ‘ (JAXA)CgƒNƒ[ƒXEƒJƒbƒvƒ‹ƒhEƒfƒ‹ƒ^—ƒŒ^‹ó—̓fƒoƒCƒX‚É‚æ‚é×’·•¨‘Ì‚Ì—gR”äŒüãCh‘æ54‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ40‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1C05iƒAƒC[ƒiF‚¢‚í‚ÄŒ§–¯î•ñŒð—¬ƒZƒ“ƒ^[C·‰ªŽsC2022”N06ŒŽ29“újD
  14. Z áÁ•¿FŠîC–k‘ºŒ\ˆêi‰¡‘‘åjCg„‘Ì DGB Œ^’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚É‚¨‚¯‚éƒLƒƒƒmƒs[“àŠOˆ³—Í•Ï“®‚̐”’l—¬‘̉ðÍ Ch 3A1-3C2021”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2022”N03ŒŽ11“új
  15. Z –k‘ºŒ\ˆêi‰¡‘‘åjCg‰æ‘œˆ—‚ð‰ž—p‚µ‚½‘½ŽŸŒ³ÕŒ‚”gŒŸ’mŒ^ CFD Žè–@‚ÌŒŸ“¢Ch 2B2-2C2021”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2022”N03ŒŽ10“új
  16. › “›ˆäŽj–çC–{–ØãČáCˆÀ‘º—SÆC –k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†@‘iJAXAjCg”ñ‘Ώ̂ɔz’u‚³‚ꂽ•¡”“Ë‹N‚ð—L‚·‚é×’·•¨‘Ì‚Ì‘J‰¹‘¬•—“´ŽŽŒ±Ch—ߘa‚R”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2021”N12ŒŽ20“újD
  17. › •Ÿ“ˆ Šx(–¼‘å) , –k‘ºŒ\ˆê(‰¡‘‘å) , ²@ ÍO(–¼‘å)CgŽã‚¢ˆÚ“®ÕŒ‚”g‚̕ߊl‚É‚¨‚¯‚鐔’l“I‰Û‘èCh‘æ35‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB03-1iƒIƒ“ƒ‰ƒCƒ“C2021”N12ŒŽ14“újD
  18. › ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å)Cgˆ³k«‘S‘¬“xƒXƒL[ƒ€‚É‚¨‚¯‚鑽ŽŸŒ³‘¬“x¬•ª‚ÌŒvŽZˆÀ’萫‚ւ̉e‹¿FSLAU‚ÆmSLAU‚Ì”äŠrCh‘æ35‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€CB04-3iƒIƒ“ƒ‰ƒCƒ“C2021”N12ŒŽ14“újD
  19. Z ŒÃàV ‘PŽ, –k‘ºŒ\ˆê(‰¡‘‘å), ‰iˆä ‘åŽ÷(“Œ–k‘å)Cgƒvƒƒyƒ‰EŒÅ’è—ƒ‹ó—ÍŠ±Â‚É‚¨‚¢‚ăvƒƒyƒ‰‚Ì—ƒ’[ƒ}ƒbƒn”•Ï‰»‚ª—^‚¦‚é‰e‹¿‚̐”’l‰ðÍCh‘æ59‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1B03iƒIƒ“ƒ‰ƒCƒ“C2021”N11ŒŽ30“újD
  20. › ˆÀ‘º —SÆ, –k‘ºŒ\ˆê(‰¡‘‘å‰@)CgŠJŽP‰Šú‚ð–Í‹[‚µ‚½’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg‚Ì‹ó—ÍŒvŽZFƒMƒƒƒbƒv‚¨‚æ‚уJƒvƒZƒ‹‹——£‚̉e‹¿Ch“ú–{‹@ŠBŠw‰ï@2021”N“x”NŽŸ‘å‰ïCS191 ‘å‹C“Ë“üEŒ¸‘¬‹Zp@[S191-01]iƒIƒ“ƒ‰ƒCƒ“C2021”N09ŒŽ07“újD
  21. › –{–Ø ãČá, “›ˆä Žj–ç, ì“‡ —E“l, –k‘ºŒ\ˆê (‰¡‘‘å‰@), –ì’† ‘ (JAXA)Cg“Ë‹N‚ð—L‚·‚é×’·•¨‘Ì‚Ì‘J‰¹‘¬ˆæ‚É‚¨‚¯‚鉡—Í“Á«Ch‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1D05iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  22. › ŠÔX‰º ’qL (‰¡‘‘å), •“¡ ’q‘¾˜N(“Œ‘å), –k‘ºŒ\ˆê(‰¡‘‘å), –ì’† ‘(JAXA)Cgƒ_ƒuƒ‹ƒR[ƒ“Œ^ÄŽg—pƒƒPƒbƒg‚ÌŽÀ‹@ƒXƒP[ƒ‹”’l‰ðÍ‚É‚æ‚鎲—Í“Á«‚Ì—\‘ªCh‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1D06iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  23. › “›ˆä Žj–ç, –k‘ºŒ\ˆê(‰¡‘‘å), –ì’† ‘(JAXA)Cg“Ë‹N‚ð—L‚·‚é×’·•¨‘Ì‚Ì‹ó—͉ðÍ‚É‚¨‚¯‚闐—¬ƒ‚ƒfƒ‹‚̉e‹¿Ch‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1A11iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  24. › ˆÀ‘º —SÆ, –k‘ºŒ\ˆê, ŒÃàV ‘PŽ (‰¡‘‘å), ‹àX ³Žj, ‹´–{ “Ö (JAXA)CgNASA CRM’ᑬƒoƒtƒFƒbƒg‚Ì”ñ’èí—¬‘̉ðÍ‚É‚¨‚¯‚闐—¬ƒ‚ƒfƒ‹‚Ɛ”’l—¬‘©ŠÖ”‚Ì”äŠrCh‘æ53‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ39‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€iANSSjC1A20iƒIƒ“ƒ‰ƒCƒ“C2021”N06ŒŽ30“újD
  25. Z Šxû»MC“¡–{„ŽjC–k‘ºŒ\ˆêi‰¡‘‘åjCóˆäGŽ÷C‹v•Û“cË–îC–¾Š¯ŠwCŽsŒ´‘å•ãC²@ÍOi–¼‘åj C gÕŒ‚”g‚ƃoƒuƒ‹‚ÌŠ±Â‚É‚æ‚萶¬‚³‚ꂽ‰Q—Ö‹““®‚̐”’l‰ðÍCh2020”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2021”N03ŒŽ04“új
  26. Z ì“‡@—E“l, “›ˆä@Žj–ç, –{–؁@ãČá, –k‘ºŒ\ˆê(‰¡‘‘å), –ì’†@‘(JAXA) Cg”ñ‘Ώ̓ˋN•t‚«×’·•¨‘Ì‚Ì‘J‰¹‘¬•—“´ŽŽŒ±Ch—ߘa‚Q”N“x@‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iƒIƒ“ƒ‰ƒCƒ“C2020”N12ŒŽ14“újD
  27. Z ŒÃàV ‘PŽ,–k‘ºŒ\ˆê(‰¡‘‘å),‰iˆä ‘åŽ÷(“Œ–k‘å),‘åŽR ¹(JAXA)Cg’჌ƒCƒmƒ‹ƒY”‚Ńvƒƒyƒ‰Œã—¬‚ªŒÅ’è—ƒ‚Ì‘w—¬”—£–A‚É—^‚¦‚é‰e‹¿‚̐”’l‰ðÍCh‘æ58‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1D09iƒIƒ“ƒ‰ƒCƒ“C2020”N11ŒŽ25“újD
  28. Z ì“‡ —E“l,–k‘ºŒ\ˆê(‰¡‘‘å),–ì’† ‘(JAXA)Cg‘J‰¹‘¬•—“´ŽŽŒ±‚¨‚æ‚ÑCFDŒ‹‰Ê‚ð—˜—p‚µ‚½’ïR’l•â³`ƒx[ƒXˆ³‘ª’èˆÊ’u‚̉e‹¿`Ch‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï,2L05iƒIƒ“ƒ‰ƒCƒ“C2020”N10ŒŽ28“újD
  29. Z “›ˆä Žj–ç,ûü–Ø —YÆ,‘ë–{ _”V,–k‘ºŒ\ˆê(‰¡‘‘å),–ì’† ‘(JAXA)Cg”ñ‘Ώ̂ɔz’u‚³‚ꂽ2‚‚̓ˋN‚ð—L‚·‚é×’·•¨‘Ì‚Ì‹ó—͉ðÍCh‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï,2L06iƒIƒ“ƒ‰ƒCƒ“C2020”N10ŒŽ28“újD
  30. Z ŒÃàV ‘PŽ,–k‘ºŒ\ˆê(‰¡‘‘å),‰iˆä ‘åŽ÷(“Œ–k‘å),‘åŽR ¹(JAXA)Cgis—¦‚ªˆÙ‚È‚éê‡‚̃vƒƒyƒ‰Œã—¬‚ªŒÅ’è—ƒ‚É—^‚¦‚é‰e‹¿‚̕ω»‚ÉŠÖ‚·‚鐔’l‰ðÍCh‘æ64‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ï,1D06iƒIƒ“ƒ‰ƒCƒ“C2020”N10ŒŽ27“újD
  31. Z–k‘ºŒ\ˆêC ˆÀ‘º —SÆ(‰¡‘‘å)C ‹àX ³ŽjC ‹´–{ “Ö(JAXA)CgNASA CRM’ᑬƒoƒtƒFƒbƒg‚Ì”ñ’èí—¬‘̉ðÍ‚É‚¨‚¯‚éŒvŽZŽè–@‚̉e‹¿‚ƍ¡Œã‚Ì“W–]Ch—¬‘Ì—ÍŠwu‰‰‰ï^q‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€2020ƒIƒ“ƒ‰ƒCƒ“C1A11iƒIƒ“ƒ‰ƒCƒ“C2020”N09ŒŽ28“újD
  32. Z ŠÔX‰º ’qLC–k‘ºŒ\ˆê (‰¡‘‘å)CâÀ“‡ Œh (JAMSTEC)Cg’áƒ}ƒbƒn”ˆæ‚ÌŽ¥‹C—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½SLAU2-MHDCh“ú–{—¬‘Ì—ÍŠw‰ï@”N‰ï2020iƒIƒ“ƒ‰ƒCƒ“C2020”N09ŒŽ20“újD
  33. Z óˆäGŽ÷C‹v•Û“cË–î(–¼‘å)C–¾Š¯Šw(’†•”“d—Í)CŽsŒ´‘å•ãC²@ÍO(–¼‘å)CŠxû»MC“¡–{„ŽjC–k‘ºŒ\ˆêi‰¡‘‘åjCgƒŒ[ƒU[‰Á”Mƒoƒuƒ‹‚Ɛ‚’¼ÕŒ‚”g‚É‚æ‚萶¬‚³‚ꂽ‰Q—Ö—ñ‚Ì‹““®Ch2019”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C1C3-3i_ŒË‘åŠwC_ŒËŽsC2020”N03ŒŽ04“újD
  34. › ì“‡—E“lC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’† ‘(JAXA)Cg×’·•¨‘Ì‚Ì‘J‰¹‘¬•—“´ŽŽŒ±‚É‚¨‚¯‚éƒx[ƒXR—͂̕␳•û–@ŒŸ“¢ Ch—ߘaŒ³”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iJAXA‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2019”N12ŒŽ09“újD
  35. ‘ë–{_”VC› ‚–Ø—YÆC“›ˆäŽj–çC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Ch”ñ‘Ώ́E•¡”“Ë‹N‚ð—L‚·‚é×’·•¨‘̉¡—Í“Á«‚ÌŽÀŒ±hC—ߘaŒ³”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iJAXA‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2019”N12ŒŽ09“újD
  36. › ŒÃàV‘PŽC–k‘ºŒ\ˆê(‰¡‘‘å)ChŒ}Šp‚ð•Ï‰»‚³‚¹‚½Û‚̃vƒƒyƒ‰^ŒÅ’è—ƒ‹ó—ÍŠ±Â‚Ì“Á«’²¸‚ÉŠÖ‚·‚鐔’l‰ðÍhC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïC3B07iƒAƒXƒeƒB‚Æ‚­‚µ‚܁C“¿“‡ŽsC2019”N11ŒŽ08“újD
  37. › ‚–Ø—YÆC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Chƒtƒ‰ƒbƒvŠp‚̈قȂéƒ{ƒ‹ƒeƒbƒNƒXEƒtƒ‰ƒbƒv‚ð—p‚¢‚½ÄŽg—pƒƒPƒbƒg‚Ì‘åŒ}Šp‚É‚¨‚¯‚éDDES‰ðÍhC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP71iƒAƒXƒeƒB‚Æ‚­‚µ‚܁C“¿“‡ŽsC2019”N11ŒŽ07“újD
  38. › ‚–Ø—YÆi‰¡‘‘åjC•“¡ ’q‘¾˜Ni“Œ‘åj,–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Chƒ_ƒuƒ‹ƒR[ƒ“Œ^ÄŽg—pƒƒPƒbƒg‚Ì‘åŒ}Šp‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì•—“´ŽŽŒ±‚Ɛ”’l‰ðÍhC‘æ63‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïC1H04iƒAƒXƒeƒB‚Æ‚­‚µ‚܁C“¿“‡ŽsC2019”N11ŒŽ06“újD
  39. › ’·’J®‰›–çC–k‘ºŒ\ˆê(‰¡‘‘å)ChƒTƒCƒhƒWƒFƒbƒg‹ó—ÍŠ±Â—¬‚ê‚É‚¨‚¯‚é‹É’´‰¹‘¬‹ó—͉Á”MŒvŽZhC“ú–{—¬‘Ì—ÍŠw‰ï ”N‰ï2019i“d‹C’ʐM‘åŠwC2019”N9ŒŽ14“újD
  40. › Ô—䐭mCŽR“à ’qŽjC–ì’† ‘(JAXA)Cûü–Ø —YÆC‘ë–{ _”VC–k‘ºŒ\ˆê(‰¡‘‘å)Ch”ñ‘Ώ̓ˋN•t‚«×’·•¨‘̂̃Vƒ…ƒŠ[ƒŒƒ“‰ÂŽ‹‰»‰æ‘œ‚©‚ç’f‘wÄ\¬hC“ú–{—¬‘Ì—ÍŠw‰ï ”N‰ï2019i“d‹C’ʐM‘åŠwC2019”N9ŒŽ13“újD
  41. › –k‘ºŒ\ˆêC¬ì—DC‘ë–{_”Vi‰¡‘‘åjC‹àX³ŽjC‹´–{“ցiJAXAjCg‚‰ð‘œ“xDDES‚É‚æ‚é’ᑬƒoƒtƒFƒbƒg‰ðÍCh‘æ51‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ37‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€(ANSS)C2E02i‘ˆî“c‘åŠw ‘ˆî“cƒLƒƒƒ“ƒpƒX ‘Û‰ï‹cêCVh‹æC2019”N7ŒŽ3“újD
  42. › ‚–Ø—YÆC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)Chƒ{ƒ‹ƒeƒbƒNƒXEƒtƒ‰ƒbƒv‚ð—p‚¢‚½ÄŽg—pƒƒPƒbƒg‚Ì‘åŒ}Šp‹ó—Í“Á«‚ÉŠÖ‚·‚éDDES‰ðÍhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-01i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  43. › ì“‡—E“lC–k‘ºŒ\ˆê(‰¡‘‘å)C–ì’† ‘(JAXA)ChÄŽg—pŒ^ƒƒPƒbƒg‚Ì‘J‰¹‘¬”òsŽž‚É‚¨‚¯‚é‹ó—͉ðÍhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-02i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  44. › ŒÃàV‘PŽC–k‘ºŒ\ˆê(‰¡‘‘å)ChŒÅ’è—ƒ‘O•û‚Ƀvƒƒyƒ‰‚ð—L‚·‚éê‡‚̌Œ藃/ƒvƒƒyƒ‰‹ó—ÍŠ±Â‚̐”’l‰ðÍhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-05i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  45. › ¬ì —DC–k‘ºŒ\ˆê(‰¡‘‘å)Ch•\–ʈړ®–@‚ð—p‚¢‚½ŽOŽŸŒ³—ƒ‚̒჌ƒCƒmƒ‹ƒY”‹ó—Í“Á«‚ÌŒüãhC“ú–{q‹ó‰F’ˆŠw‰ï@‘æ50Šú”N‰ïu‰‰‰ïC1C-14i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2019”N4ŒŽ18“újD
  46. › Â–ì~–çC–k‘ºŒ\ˆêi‰¡‘‘åjCgˆ³k«‚Q—¬‘̃‚ƒfƒ‹‚É‚¨‚¯‚éAUSM-familyƒXƒL[ƒ€‚ÌŽUˆí—ʂ̐”’l“IŒŸ“¢Ch•½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C2D1-1i‰¡•l‘—§‘åŠwC‰¡•lŽsC2019”N3ŒŽ6“újD
  47. › “¡–{„ŽjC–k‘ºŒ\ˆêi‰¡‘‘åjCg\‘¢ŠiŽq‚É‚¨‚¯‚é’áƒRƒXƒg‚©‚‚¸“x‚ȏՌ‚”gŒŸ’m–@‚ÌŠJ”­Ch•½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C2D1-4i‰¡•l‘—§‘åŠwC‰¡•lŽsC2019”N3ŒŽ6“újD
  48. › ”ª–؏À‘åãāC–k‘ºŒ\ˆêi‰¡‘‘åjCg’´‰¹‘¬”òsŽž‚É‚¨‚¯‚é”òãđ̃vƒ‹[ƒ€Š±Â‚̐”’l‰ðÍCh•½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€C1A3-4i‰¡•l‘—§‘åŠwC‰¡•lŽsC2019”N3ŒŽ5“újD
  49. Z ‰Í“à˜aŠÏCŒ´“c•q–¾C–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjg”ñ‘Ώ̓ˋN‚ð—L‚·‚é×’·•¨‘̉¡—Í“Á«‚ÌŽÀŒ±E”’l‰ðÍhC•½¬30”N“x‰F’ˆqs‚Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€iJAXA‰F’ˆ‰ÈŠwŒ¤‹†ŠC‘Š–ÍŒ´ŽsC2018”N12ŒŽ10“újD
  50. Z •Ÿ–{Š¬‘¾C–k‘ºŒ\ˆêi‰¡‘‘åjCX_ˆêi–¼‘åjg’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg“àŠO‚É‚¨‚¯‚é—¬‘Ì•Ï“®‚̐”’l‰ðÍCh‘æ62‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïC3L03i‹v—¯•ÄƒVƒeƒBƒvƒ‰ƒUC‹v—¯•ÄŽsC2018”N10ŒŽ26“újD
  51. Z ‚–Ø—YÆCÂŠ`‘ñ–çC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjgƒtƒBƒ“•t‚«ÄŽg—pƒƒPƒbƒg‚É‚¨‚¯‚éƒsƒbƒ`ƒ“ƒOƒ‚[ƒƒ“ƒg“Á«‚̐”’l‰ðÍCh‘æ62‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP01i‹v—¯•ÄƒVƒeƒBƒvƒ‰ƒUC‹v—¯•ÄŽsC2018”N10ŒŽ25“újD
  52. Z Œ´“c•q–¾C‰Í“à˜aŠÏC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjg”ñ‘Ώ̓ˋN•¨‚ð—L‚·‚é×’·”òãđ̂̉¡—Í“Á«‚ÉŠÖ‚·‚鐔’l‰ðÍCh‘æ62‰ñ‰F’ˆ‰ÈŠw‹Zp˜A‡u‰‰‰ïCP83i‹v—¯•ÄƒVƒeƒBƒvƒ‰ƒUC‹v—¯•ÄŽsC2018”N10ŒŽ25“újD
  53. › ûü–Ø—YÆCÂŠ`‘ñ–çC–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjgƒ{ƒ‹ƒeƒbƒNƒXEƒtƒ‰ƒbƒv‚ð—p‚¢‚½ƒtƒBƒ“•t‚«ÄŽg—pƒƒPƒbƒg‚̃sƒbƒ`ƒ“ƒOƒ‚[ƒƒ“ƒg“Á«Ch‘æ50‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ36‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€(ANSS)C2C09i‹{èŽs–¯ƒvƒ‰ƒUC‹{èŽsC2018”N7ŒŽ5“újD
  54. › “¡–{„ŽjC‰Íè‘¾˜YC–k‘ºŒ\ˆêi‰¡‘‘åjCg‰æ‘œˆ—–@‚Ì“±“ü‚É‚æ‚é’áƒRƒXƒg‚Å–â‘èˆË‘¶«‚Ì‚È‚¢ÕŒ‚”gŒŸ’m–@‚ÌŠJ”­Ch‘æ50‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ36‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€(ANSS)C1B09i‹{èŽs–¯ƒvƒ‰ƒUC‹{èŽsC2018”N7ŒŽ4“újD
  55. › •Ÿ–{Š¬‘¾C–k‘ºŒ\ˆêi‰¡‘‘åjCX_ˆêC‘q“c–¸‘¾i–¼‘åjCh’´‰¹‘¬ƒpƒ‰ƒVƒ…[ƒg„‘Ì–ÍŒ^‚ÌBandŽxŽ\‘¢‚É‚æ‚é•\–Ê‹y‚ÑŽüˆÍ—¬‚êê‚ւ̉e‹¿Ch“ú–{q‹ó‰F’ˆŠw‰ï@‘æ49Šú”N‰ïu‰‰‰ïC2B06i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2018”N4ŒŽ20“újD
  56. › ‰Í“à˜aŠÏCŒ´“c•q–¾C–k‘ºŒ\ˆêi‰¡‘‘åjC–ì’†‘iJAXAjCh”ñ‘Ώ̓ˋN•¨‚ð—L‚·‚é×’·•¨‘Ì‹ó—Í“Á«‚ɂ‚¢‚Ä‚Ì’´‰¹‘¬•—“´ŽŽŒ±Ch“ú–{q‹ó‰F’ˆŠw‰ï@‘æ49Šú”N‰ïu‰‰‰ïC1B09i“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†ŠC2018”N4ŒŽ19“újDŠw¶—DG”­•\ÜŽóÜ

    ¦@›‚Í”­•\ŽÒD
Žw“±Šw¶‚Ì‚Ý‚É‚æ‚éŠw‰ï”­•\
  1. › —é–ØŒb‘¾i‰¡‘‘åjCgeVTOL‚̃[ƒ^ˆÊ’u‚ª‹@‘Ì‹ó—Í“Á«‚É‹y‚Ú‚·‰e‹¿‚̐”’l‰ðÍCh‘æ60‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1D15iVŠƒŽsC2022”N10ŒŽ11“újD
  2. › ’Ë–{—I‘¾i‰¡‘‘åjCgƒX[ƒp[ƒNƒŠƒeƒBƒJƒ‹—ƒ‚É‚¨‚¯‚é Vortex GeneratorE—ƒ‹«ŠE‘wŠ±Â‚̐”’l“I’²¸Ch‘æ60‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C1D01iVŠƒŽsC2022”N10ŒŽ11“újD
  3. › —é–ØŒb‘¾i‰¡‘‘åjCŽ©“®ŽÔ‹Zp‰ï@2022”Nt‹G‘å‰ï@Šw¶ƒ|ƒXƒ^[ƒZƒbƒVƒ‡ƒ“iƒpƒVƒtƒBƒR‰¡•lC‰¡•lŽs{ƒIƒ“ƒ‰ƒCƒ“C2022”N05ŒŽ27“újD
  4. Z ŽRŒû‘ñ^i‰¡‘‘åjCg‚‚¢‹ó—͐«”\‚ð—L‚·‚é“·‘ÌŒ`ó‚Ƃ́IH@`‹ó”ò‚ÔƒNƒ‹ƒ}‚â’´‰¹‘¬—·‹q‹@‚ÌŽÀŒ»‚ÉŒü‚¯‚ā`Ch‘æ10‰ñƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒCƒtƒ@ƒCƒiƒŠƒXƒgŒû“ª”­•\iƒIƒ“ƒ‰ƒCƒ“C2021”N01ŒŽ25“újDuŽQ‰ÁŠé‹ÆÜiƒtƒ@[ƒEƒFƒCÜjv
  5. › ¬ì—Di‰¡‘‘åjCg•\–ʈړ®–@‚ð—p‚¢‚½’჌ƒCƒmƒ‹ƒY”C‚ƒ}ƒbƒn”‚É‚¨‚¯‚é“ñŽŸŒ³—ƒ‹ó—Í“Á«‚ÌŒüãCh‘æ56‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C2C01iŽRŒ`ƒeƒ‹ƒTCŽRŒ`ŽsC2018”N11ŒŽ15“újD
  6. › ‘ë–{_”Vi‰¡‘‘åjCgVortex Generator‚É‚æ‚é‘J‰¹‘¬ƒoƒtƒFƒbƒg—}§‚̐”’l“IŒ¤‹†Ch‘æ56‰ñ”òs‹@ƒVƒ“ƒ|ƒWƒEƒ€C2C02iŽRŒ`ƒeƒ‹ƒTCŽRŒ`ŽsC2018”N11ŒŽ15“újD
  7. Z “¡–{„Žji‰¡‘‘åjCgŒ©‚¦‚È‚¢ÕŒ‚”g‚𑨂¦‚ëI`—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚¨‚¯‚éÕŒ‚”gŒŸ’m–@‚ÌŠJ”­`Ch‘æ7‰ñƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒC”­•\”ԍ†17i—§‹³‘åŠwC“Œ‹ž“s–L“‡‹æC2018”N03ŒŽ04“újDuƒTƒCƒGƒ“ƒXEƒCƒ“ƒJƒŒEƒRƒ“ƒ\[ƒVƒAƒ€§—ãÜ@ƒOƒbƒhƒpƒtƒH[ƒ}ƒ“ƒXÜv
‹LŽ–E‹ZpŽ‘—¿E•ñ‘
  1. –k‘ºŒ\ˆêF@‹ó”ò‚ÔƒNƒ‹ƒ}‚ðŽæ‚芪‚­ŠÂ‹«‚Æ‚»‚ÌŽÀŒ»‚ÉŒü‚¯‚½Œ¤‹†ŠJ”­C‚‘¬“¹˜H‚ÆŽ©“®ŽÔCVol. 65 (2022), No. 4, p.7.
  2. –k‘ºŒ\ˆêF@‰¡•l‘—§‘åŠw‹ó‹C—ÍŠwŒ¤‹†Žº‚É‚¨‚¯‚é‰ÂŽ‹‰»Ž–—áFÕŒ‚”g‚ƉQC‰ÂŽ‹‰»î•ñŠw‰ïŽCVol.41 (2021), No.162, pp.15-16D
  3. “ˆ‰pŽuC–k‘ºŒ\ˆêF@‘S‘¬“x—¬‘ÌŒvŽZƒXƒL[ƒ€SLAU‚ÌŠJ”­C“ú–{q‹ó‰F’ˆŠw‰ïŽCVol.69 (2021), No.12, pp.337-340DDOIF10.14822/kjsass.69.12_337
  4. –k‘ºŒ\ˆêF@ÕŒ‚”g‚É‚¨‚¢‚ĈÀ’è‚©‚‚¸“x‚È—¬‘ÌŒvŽZŽè–@‚Ì’ñˆÄi—³–åÜŽóÜ‹L”O‰ðàjC‚È‚ª‚êCVol.37 (2018), No.3, pp.221-228D
  5. –k‘ºŒ\ˆêF@ƒOƒ[ƒoƒ‹AEROiŠCŠO‹ó—Í‹@ŠÖ–K–âE‘؍݃Œƒ|[ƒgj‘æ13‰ñ@NASA Glenn Research CenterC“ú–{q‹ó‰F’ˆŠw‰ïŽCVol.61 (2013), No.12, pp.414-415D
  6. Šâ‰i‘¥éC‹à“c‰p˜aC‘ºãŒjˆêC‹´–{“ցC–k‘ºŒ\ˆêCÂŽR„ŽjC’†‘º‰À˜NF@ƒƒPƒbƒg‘Å‚¿ã‚°Žž‚̉¹‹¿ŠÂ‹«‚ð•]‰¿‚·‚éEuler/LEEƒR[ƒh@‘æ2•ñ@LEE ƒIƒvƒVƒ‡ƒ“CJAXA-RM-08-009 (2009)D
  7. ‹à“c‰p˜aCŠâ‰i‘¥éC‘ºãŒjˆêC‹´–{“ցC–k‘ºŒ\ˆêCÂŽR„ŽjC’†‘º‰À˜NF@ƒƒPƒbƒg‘Å‚¿ã‚°Žž‚̉¹‹¿ŠÂ‹«‚ð•]‰¿‚·‚éEuler/LEEƒR[ƒh@‘æ1•ñ@EulerƒIƒvƒVƒ‡ƒ“CJAXA-RM-07-015 (2008)D
  8. ‘ºãŒjˆêC‚‹´ FC–k‘ºŒ\ˆêC‹´–{ “ցCÂŽR„ŽjC’†‘º‰À˜NF@”’l‰ðÍ‚É‚æ‚郍ƒPƒbƒg‘ŏグŽž‚̉¹‹¿U“®‚ÉŠÖ‚·‚錤‹†C‰ÂŽ‹‰»î•ñCVol.27 (2007), No.2, pp.163-164D
Œ¤‹†Ž‘‹àŠl“¾ó‹µ
  1. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠî”ÕŒ¤‹†iBjvw‰ð‘œ“x‚TŽŸ¸“x’´‚ÌŒø—¦“I‚È2ŽŸ¸“xŒ^ˆ³k«—¬‘ÌŒvŽZ–@‚Æ•¡ŽG—¬‘Ì•¨—‚ւ̉ž—pxi2023”N4ŒŽ`2026”N3ŒŽjC‘ã•\D
  2. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠwp•ÏŠv—̈挤‹†iAjiŒö•åŒ¤‹†jvw“Á’¥–ÊŒŸoE‰ð‘œ“xŒüã‚ðŽ©“®‚Å‘ŠŒÝ‚ɍs‚¤AIÏ‹É—Z‡Œ^‚̐V‚µ‚¢”’l—¬‘Ì—ÍŠwxi2023”N4ŒŽ`2025”N3ŒŽjC‘ã•\D
  3. “Œ–k‘åŠw—¬‘̉ȊwŒ¤‹†Š—ߘa‚T”N“xŒö•å‹¤“¯Œ¤‹†w‰Î¯”òs‹@‚É‚¨‚¯‚éƒvƒƒyƒ‰Œã—¬EŽå—ƒŠ±Â—¬‚ê‚̉𖾁xiŒp‘±3”N–ځji2023”N4ŒŽ`2024”N3ŒŽjC‹¤“¯‘ã•\i‰iˆä‘åŽ÷C–k‘ºŒ\ˆêjD
  4. Œö‰và’c–@l ‰Î–òH‹Æ‹Zp§—ã‰ï@2022”N“xŒ¤‹†•¬w”š”­C”šŒ‚̐¸–§ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½ˆÚ“®ÕŒ‚”g‚̐”’lŒvŽZ–@Šm—§i‚»‚Ì‚Qjxi2022”N6ŒŽjC‘ã•\D
  5. “Œ–k‘åŠw—¬‘̉ȊwŒ¤‹†Š—ߘa‚S”N“xŒö•å‹¤“¯Œ¤‹†w‰Î¯”òs‹@‚É‚¨‚¯‚éƒvƒƒyƒ‰Œã—¬EŽå—ƒŠ±Â—¬‚ê‚̉𖾁xiŒp‘±2”N–ځji2022”N4ŒŽ`2023”N3ŒŽjC‹¤“¯‘ã•\i‰iˆä‘åŽ÷C–k‘ºŒ\ˆêjD
  6. ‰ÈŠwŒ¤‹†”ï•â•‹àu‘Û‹¤“¯Œ¤‹†‹­‰»iAjvw‰æ‘œˆ—‚Æ—¬‘Ì—ÍŠw‚Ì—Z‡‚É‚æ‚éÕŒ‚”gŒŸ’m‚ƍ‚¸“xŽÀ—p——¬ŒvŽZxi2022”N3ŒŽ`2025”N3ŒŽjC‘ã•\D
  7. ‘—§Œ¤‹†ŠJ”­–@l VƒGƒlƒ‹ƒM[EŽY‹Æ‹Zp‘‡ŠJ”­‹@\iNEDOjuŠ¯–¯‚É‚æ‚éŽáŽèŒ¤‹†ŽÒ”­Œ@Žx‰‡Ž–‹Æ^ƒ}ƒbƒ`ƒ“ƒOƒTƒ|[ƒgƒtƒF[ƒYvw‹ó”ò‚ÔƒNƒ‹ƒ}‚Ì‹ó—͐݌vDX‚ÆŽÀ‹@”òsxi2022”N3ŒŽ`2023”N2ŒŽjC‘ã•\D
  8. Œö‰và’c–@l Z—Fà’c@Šî‘b‰ÈŠwŒ¤‹†•¬wCOVID-19”ò–—Š´õ—\‘ª‚ÉŒü‚¯‚½‹ó‹C’†‚ð•Y‚¤ŒÅ‘Ì—±Žq‚̍¬‘Š—¬ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“xiŒp‘±ji2021”N11ŒŽjC‘ã•\D
  9. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠî”ÕŒ¤‹†iAjvw‘O•û—¬‘¬ênudge‚É‚æ‚éÕŒ‚”g•Ï’²`”g–ʏÁŽ¸Œ´—ŽÀØ‚Ɖž—p“WŠJxi2021”N4ŒŽ`2025”N3ŒŽjC•ª’Si‘ã•\F²@ ÍOjD
  10. JAXAw’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†i‚»‚Ì‚Qjxi2021”N7ŒŽ`2022”N2ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  11. Œö‰và’c–@l ‰Î–òH‹Æ‹Zp§—ã‰ï@2021”N“xŒ¤‹†•¬w”š”­C”šŒ‚̐¸–§ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½ˆÚ“®ÕŒ‚”g‚̐”’lŒvŽZ–@Šm—§xi2021”N6ŒŽjC‘ã•\D
  12. Œö‰và’c–@l ‰¡•lH‹Æ‰ï Œ¤‹†•¬w‰t‘Ì•¨—‚É’‰ŽÀ‚ȃVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚é”ò–—EƒGƒAƒƒ]ƒ‹‹““®—\‘ªxi2021”N6ŒŽ`2022”N3ŒŽjC‘ã•\D
  13. “Œ–k‘åŠw—¬‘̉ȊwŒ¤‹†Š—ߘa‚R”N“xŒö•å‹¤“¯Œ¤‹†w‰Î¯”òs‹@‚É‚¨‚¯‚éƒvƒƒyƒ‰Œã—¬EŽå—ƒŠ±Â—¬‚ê‚̉𖾁xi2021”N4ŒŽ`2022”N3ŒŽjC‹¤“¯‘ã•\i‰iˆä‘åŽ÷C–k‘ºŒ\ˆêjD
  14. —ߘa3”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æji2021”N6ŒŽ`2022”N3ŒŽjC‘ã•\D
  15. Œö‰và’c–@l Z—Fà’c@Šî‘b‰ÈŠwŒ¤‹†•¬wCOVID-19”ò–—Š´õ—\‘ª‚ÉŒü‚¯‚½‹ó‹C’†‚ð•Y‚¤ŒÅ‘Ì—±Žq‚̍¬‘Š—¬ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“xi2020”N11ŒŽjC‘ã•\D
  16. JAXAw’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†xi2020”N8ŒŽ`2021”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  17. Œö‰và’c–@l ‰¡•lŠwp‹³ˆçU‹»à’c Œ¤‹†•¬w‹C‘́EŒÅ‘̍¬‘Š—¬ƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚é COVID-19”ò–—Š´õ¸–§—\‘ªxi2020”N7ŒŽjC‘ã•\D
  18. ‰ÈŠwŒ¤‹†”ï•â•‹àiŒ¤‹†¬‰ÊŒöŠJ‘£i”ïjuŒ¤‹†¬‰ÊŒöŠJ”­•\i‚aji‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚ց`‚j‚`‚j‚d‚m‚g‚hjvg”òãđ́i‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚ɂ́`hi2019”N4ŒŽ`2020”N3ŒŽjC‘ã•\D
  19. JAXAw”ñ’èí”’l—¬‘©‚𓱓ü‚µ‚½‚‰ð‘œ“xDDES‚É‚æ‚é’ᑬƒoƒtƒFƒbƒg‚̉ðÍxi2019”N7ŒŽ`2020”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  20. ‰ÈŠwŒ¤‹†”ï•â•‹àuŠî”ÕŒ¤‹†iCjvw‰æ‘œˆ—‚Æ—¬‘Ì—ÍŠw‚Ì—Z‡‚É‚æ‚éÕŒ‚”gŒŸ’m‚Æ64”{‰ð‘œ“x—¬‘ÌŒvŽZxi2019”N4ŒŽ`2022”N3ŒŽjC‘ã•\D
  21. •½¬31”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æji2019”N7ŒŽ`2020”N3ŒŽjC‘ã•\D
  22. JAXAw—̈攻•ÊŠÖ”‚𓱓ü‚µ‚½‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxi2018”N6ŒŽ`2019”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  23. Œö‰và’c–@l ‰¡•lŠwp‹³ˆçU‹»à’c •½¬30”N“xŠCŠO“nq”¬ w“dŽ¥—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Ì‚½‚ß‚ÌSLAU2-HLLIƒnƒCƒuƒŠƒbƒh–@xi2018”N8ŒŽjD
  24. “ú–{ŠwpU‹»‰ïu¬E’†E‚Z¶‚Ì‚½‚߂̃vƒƒOƒ‰ƒ€@‚Ђç‚ß‚«™‚Æ‚«‚ß‚«ƒTƒCƒGƒ“ƒX`‚悤‚±‚»‘åŠw‚ÌŒ¤‹†Žº‚ց`KAKENHIiŒ¤‹†¬‰Ê‚̎ЉïŠÒŒ³E•‹yŽ–‹Æjvw”òãđ́i‚Ђµ‚傤‚½‚¢j‚Ì‚Ó‚µ‚¬`”òs‹@‚âƒhƒ[ƒ“‚ðãŽè‚­”ò‚΂·‚ɂ́`xi2018”N4ŒŽ`2019”N3ŒŽjC‘ã•\D
  25. •½¬30”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æjw“V‘Ì•¨—Šw^q‹ó‰F’ˆHŠw—Z‡‚É‚æ‚é‰F’ˆ•¨—‚̉𖾁C‚»‚Ì‚QF•Ä‘ƒm[ƒgƒ‹ƒ_ƒ€‘åŠw‚Ƃ̍‘Û‹¤“¯Œ¤‹†‚Ì‘£ixi2018”N4ŒŽ`2019”N3ŒŽjC‘ã•\D
  26. JAXAw‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxi2017”N6ŒŽ`2018”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  27. Œö‰và’c–@l ‰¡•lH‹Æ‰ï •½¬29”N“x Œ¤‹†ŽÒ“™‚ÌŠCŠO”hŒ­i2017”N6ŒŽjD
  28. •½¬29”N“xŠw’·í—ªŒo”ïiŽáŽè‚ÌŒ¤‹†Šˆ“®Žx‰‡Ž–‹Æjw“V‘Ì•¨—Šw^q‹ó‰F’ˆHŠw—Z‡‚É‚æ‚é‰F’ˆ•¨—‚̉𖾁F•Ä‘ƒm[ƒgƒ‹ƒ_ƒ€‘åŠwBalsara y‹³Žö‚Ƃ̍‘Û‹¤“¯Œ¤‹†‚Ì—§‚¿ã‚°xi2017”N4ŒŽ`2018”N3ŒŽjC‘ã•\D
  29. JAXAw—¬‘̉ðÍƒR[ƒhFaSTAR‚ւ̍‚‰ð‘œ“xƒXƒL[ƒ€‚Ì“±“üxi2016”N6ŒŽ`2017”N3ŒŽjCŽó‘õŒ¤‹†C‘ã•\D
  30. Œö‰và’c–@l ’†“‡‹L”O‘ÛŒð—¬à’c “ú–{lŽáŽèŒ¤‹†ŽÒŒ¤‹†•¬‹àCwÕŒ‚”gŒ»Û‚ð‚‰ð‘œ“x‚É‘¨‚¦‚邽‚ß‚Ì—¬‘̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹Zp‚̍\’zxi2015”N4ŒŽ`2016”N3ŒŽjC‘ã•\D
  31. •½¬26”N“xuJAXAq‹ó–{•”‚É‚¨‚¯‚éŒö•åŒ^Œ¤‹†vCi5j‚Œ}Šp‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½‚¸“x‚Œø—¦CFD‰ðÍŽè–@‚ÌŒ¤‹†Cw‘J‰¹‘¬—p‘æ‚Q§ŒÀŠÖ”‚É‚æ‚鍂‰ð‘œ“xE‚Œø—¦CFDŽè–@xi2014”N8ŒŽ`2016”N3ŒŽjC‹¤“¯Œ¤‹†C‘ã•\D
  32. Œö‰và’c–@l ‰¡•lŠwp‹³ˆçU‹»à’c •½¬26”N“xŠCŠO“nq”¬ w‚‰ð‘œ“xC”ñ\‘¢ŠiŽqƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŒü‚¯‚½ŽUˆí’ጸSLAU–@‚¨‚æ‚ÑAUSM+-up–@xi2014”N8ŒŽjD
  33. ‰ÈŠwŒ¤‹†”ï•â•‹àuŽáŽèŒ¤‹†iBjvw”’l“I•]‰¿–@‚ÉŠî‚­‚‘¬E’ᑬE¬‘Š—¬“‡‰ðÍVŽè–@‚ÌŒ¤‹†xi2013”N4ŒŽ`2016”N3ŒŽjC‘ã•\D
  34. ‰ÈŠwŒ¤‹†”ï•â•‹àu“Á•ÊŒ¤‹†ˆõ§—ã”ïvw”’l“IƒAƒvƒ[ƒ`‚É‚æ‚éÕŒ‚”gˆÀ’èE‘S‘¬“x—¬‘̉ðÍŽè–@‚ÌŒ¤‹†xi2011”N4ŒŽ`2013”N3ŒŽjC‘ã•\D
  35. “ú–{ŠwpU‹»‰ï@“ñ‘ŠÔŒð—¬Ž–‹Æ@•½¬26”N“xƒI[ƒvƒ“ƒp[ƒgƒi[ƒVƒbƒv‹¤“¯Œ¤‹†iƒƒVƒA˜A–MjwŠî‘b‹y‚эHŠw–â‘è‚É‚¨‚¯‚é—¬‘Ì—ÍŠw“I•sˆÀ’萫‚Æ——¬‚ÌŒvŽZ‰ÈŠw“I‰ð–¾ (The investigation of hydrodynamic instabilities and turbulence in fundamental and technological problems by means of mathematical modeling on supercomputers)xi2014”N7ŒŽ`2016”N6ŒŽjC•ª’Si‘ã•\F–¼ŒÃ‰®‘åŠw@ÎˆäŽÆ‹³ŽöGƒƒVƒA‰ÈŠwƒAƒJƒfƒ~[@ƒƒ“ƒVƒ‡ƒtEƒCƒS[ƒ‹‹³ŽöjD
  36. wH25”N“x‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½”’l—¬‘©‚̉ü—ǁxi2013”N8ŒŽ`2014”N3ŒŽjCŠé‹Æ“™‚©‚ç‚ÌŽó‘õŒ¤‹†C•ª’SD
  37. à’c–@l ‰F’ˆ‰ÈŠwU‹»‰ï ‘ÛŠw‰ïoÈ—·”ïŽx‰‡i2010”N6ŒŽjD
  38. –¼ŒÃ‰®‘åŠwHŠw•” •”‹ÇŠÔ‹¦’èZ ŒðŠ·—¯Šw¶§Šw‹ài2006”N8ŒŽ`2007”N7ŒŽjD
  39. 21¢‹ICOEƒvƒƒOƒ‰ƒ€uŒvŽZ‰ÈŠwƒtƒƒ“ƒeƒBƒAvŒ¤‹†•â•‹à‚¨‚æ‚э‘“àŠOo’£—·”ïi2004”N10ŒŽ`2006”N7ŒŽjD
  40. –¼ŒÃ‰®‘åŠwHŠw•” ‘ÛŠw‰ï o’£—·”Šw‹ài2004”N1ŒŽjD
  41. wTSTO•ª—£Žž‚É‚¨‚¯‚é‹ó—ÍŠ±Â‚ÉŠÖ‚·‚錤‹†xi2007”N7ŒŽ`2008”N3ŒŽjCŠé‹Æ“™‚©‚ç‚ÌŽó‘õŒ¤‹†C•ª’SD
  42. wTSTO‚É‚¨‚¯‚é‹É’´‰¹‘¬‹ó—ÍŠ±Âxi2006”N9ŒŽ`2007”N3ŒŽjCoŽ‘‹à‚É‚æ‚éŽó‘õŒ¤‹†C•ª’SD
  43. wƒƒPƒbƒg‘Å‚¿ã‚°Žž‚̉¹‹¿‰ðÍxi2006”N1ŒŽ`2006”N3ŒŽjCŠé‹Æ“™‚©‚ç‚ÌŽó‘õŒ¤‹†C•ª’SD
  44. wTSTO‚É‚¨‚¯‚é‹ó—ÍŠ±Â‚̈³—Í‚Æ‹ó—͉Á”M—¦‚Ì’è—Ê“I•]‰¿xi2005”N7ŒŽ`2006”N3ŒŽjCoŽ‘‹à‚É‚æ‚éŽó‘õŒ¤‹†C•ª’SD
Šw‰ï‚ւ̍vŒ£
  1. ‹ó‹C—ÍŠw•”–å@ˆÏˆõF@34th ISTS, 2022-2023.
  2. ƒI[ƒKƒiƒCƒUF wOS.2-1F”ñˆ³k—¬‚ê‰ð–@Cˆ³k—¬‚ê‰ð–@xC‘æ34‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€`, 2020-.
  3. “ú–{‹@ŠBŠw‰ï@‰F’ˆHŠw•”–å ‘æ99ŠúˆÏˆõC2021-2022.
  4. “ú–{‹@ŠBŠw‰ï@_“ސìƒuƒƒbƒNŠ²Ž–‰ïˆÏˆõC2021-2022.
  5. ‹ó‹C—ÍŠw•”–å@ˆÏˆõ’·F@33rd ISTS, 2020-2022.
  6. •ª‰È‰ïˆÏˆõF@“ú–{‹@ŠBŠw‰ï RC286 —¬‚ê‚̐æi“IŒv‘ªEƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“–@‚Æ—¬‘̏î•ñ‚̍‚“x—˜—p‚ÉŠÖ‚·‚錤‹†•ª‰È‰ï, 2020-2022.
  7. ŽÀsˆÏˆõF ‘æ34‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, 2020.
  8. ‹ó‹C—ÍŠw•”–å@•›ˆÏˆõ’·F@32nd ISTS, 2018-2019.
  9. Š²Ž–F •½¬30”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€, 2018-2019.
  10. ŽÀsˆÏˆõF ‘æ32‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, 2018.
  11. ŽÀsˆÏˆõF •½¬28”N“xÕŒ‚”gƒVƒ“ƒ|ƒWƒEƒ€, 2017.
  12. Š²Ž–F ‘æ48‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ34‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€, 2016.
  13. “ú–{q‹ó‰F’ˆŠw‰ï@‘æ47`48Šú@‹ó‹C—ÍŠw•”–劲Ž–C2015`2016”N“xD
  14. “ú–{q‹ó‰F’ˆŠw‰ï@‘æ47`48Šú@L•ñˆÏˆõC2015`2016”N“xD
  15. ŽÀsˆÏˆõF “ú–{‹@ŠBŠw‰ï ‘æ28‰ñŒvŽZ—ÍŠwu‰‰‰ïiCMD2015j, 2015.
  16. ŽÀsˆÏˆõF ‘æ‚S‚V‰ñ—¬‘Ì—ÍŠwu‰‰‰ï^‘æ‚R‚R‰ñq‹ó‰F’ˆ”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‹ZpƒVƒ“ƒ|ƒWƒEƒ€, 2015.
  17. ŽÀsˆÏˆõF “ú–{‹@ŠBŠw‰ï ŠÖ“ŒŽx•”‘æ21Šú‘‰ïEu‰‰‰ï, 2015.
  18. ŽÀsˆÏˆõF ‘æ27‰ñ”’l—¬‘Ì—ÍŠwƒVƒ“ƒ|ƒWƒEƒ€, 2013.
  19. ‘Û‰ï‹cÀ’·F "Shock-Capturing Schemes II," 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, Jun. 2011.
˜_•¶•ÒW
  1. Aerospace Technology Japan (Associate Editor)
Žå‚Ș_•¶¸“Ç
  1. Journal of Computational Physics (2014: Outstanding Reviewer)
  2. Computers & Fluids
  3. AIAA Journal
  4. Communications in Computational Physics
  5. International Journal for Numerical Methods in Fluids
  6. Journal of Propulsion and Power
‹³ˆçŽÀÑ
  1. i2018”N4ŒŽ`j@‰¡•l‘—§‘åŠw@u‰ž—p‹@ŠBÝŒv»}Iviƒhƒ[ƒ““™”òs‘Ì’S“–j
  2. i2017”N4ŒŽ`j@‰¡•l‘—§‘åŠw@u‹ó‹C—ÍŠwv
  3. i2017”N4ŒŽ`j@‰¡•l‘—§‘åŠw@u”’l—¬‘Ì—ÍŠw“ü–åv
  4. i2015”N10ŒŽ`j@‰¡•l‘—§‘åŠw@u—¬‘Ì—ÍŠwIIv
  5. i2015”N10ŒŽ`j@‰¡•l‘—§‘åŠw‰@@u‹@ŠBƒVƒXƒeƒ€HŠw—֍uII (Seminar in Mechanical System Engineering II)v
  6. i2015”N4ŒŽ`j@‰¡•l‘—§‘åŠw‰@@u‹@ŠBƒVƒXƒeƒ€HŠw—֍u‡T (Seminar in Mechanical System Engineering I)v
  7. i2014”N10ŒŽ`j@‰¡•l‘—§‘åŠw‰@@uˆ³k«—¬‘Ì—ÍŠw (Compressible Flow)v
  8. i2014”N10ŒŽ`2017”N 3ŒŽj@‰¡•l‘—§‘åŠw@u‹@ŠBŒn‚̐”Šw‰‰KIIv
  9. i2013”N10ŒŽ`2014”N 1ŒŽj@–¼ŒÃ‰®‘åŠw‰@@u—¬‘Ì—ÍŠwƒZƒ~ƒi[1Dv
  10. i2013”N10ŒŽ`2014”N 1ŒŽj@–¼ŒÃ‰®‘åŠw@uŒvŽZ—¬‘Ì—ÍŠwv
  11. i2013”N 6ŒŽ`2013”N 9ŒŽj@–¼ŒÃ‰®‘åŠw‰@@uq‹ó‹@‘ÛŠJ”­ƒvƒƒWƒFƒNƒg‰‰Kv
  12. i2013”N 5ŒŽ`2013”N 8ŒŽj@–¼ŒÃ‰®‘åŠw‰@@ uJUACEP Summer Research Program 2013vi“ú–{ŠwpU‹»‰ï@w‘åŠw‚̐¢ŠE“WŠJ—Í‹­‰»Ž–‹Æxj@ƒ~ƒVƒKƒ“‘åŠwŠw¶‚ÌŒ¤‹†Žw“±FwAUSM Family 2nd-order Schemes for Ideal Magnetohydrodynamics with Divergence-Free Reconstructionx
  13. i2013”N 4ŒŽ`2013”N 7ŒŽj@–¼ŒÃ‰®‘åŠw@u‹@ŠBEq‹óHŠw‰ÈŽÀŒ±‘æ1v
  14. i2013”N 4ŒŽ`2013”N 7ŒŽj@–¼ŒÃ‰®‘åŠw‰@@u—¬‘Ì—ÍŠwƒZƒ~ƒi[1Cv
  15. i2012”N10ŒŽ`2013”N 1ŒŽj@–¼ŒÃ‰®‘åŠw‰@@u—¬‘Ì—ÍŠwƒZƒ~ƒi[1Bv
Žó‘õ^‹¤“¯Œ¤‹†
  1. i2021”N 8ŒŽ`2022”N 2ŒŽj@JAXAF w’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†i‚»‚Ì‚QjxC‘ã•\
  2. i2020”N 8ŒŽ`2021”N 3ŒŽj@JAXAF w’ᑬƒoƒtƒFƒbƒgŒ»Û‚ɑ΂·‚éSAƒx[ƒX‚ÌDES‰ðÍŽè–@‚̉ü‘P‚ÉŠÖ‚·‚錤‹†xC‘ã•\
  3. i2019”N 7ŒŽ`2020”N 3ŒŽj@JAXAF w”ñ’èí”’l—¬‘©‚𓱓ü‚µ‚½‚‰ð‘œ“xDDES‚É‚æ‚é’ᑬƒoƒtƒFƒbƒg‚̉ðÍxC‘ã•\
  4. i2018”N 6ŒŽ`2019”N 3ŒŽj@JAXAF w—̈攻•ÊŠÖ”‚𓱓ü‚µ‚½‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxC‘ã•\
  5. i2017”N 6ŒŽ`2018”N 3ŒŽj@JAXAF w‚‰ð‘œ“xƒXƒL[ƒ€‚ð—p‚¢‚½’ᑬƒoƒtƒFƒbƒg‚̉ðÍxC‘ã•\
  6. i2016”N 6ŒŽ`2017”N 3ŒŽj@JAXAF w—¬‘̉ðÍƒR[ƒhFaSTAR‚ւ̍‚‰ð‘œ“xƒXƒL[ƒ€‚Ì“±“üxC‘ã•\
  7. i2014”N 8ŒŽ`2016”N 3ŒŽj@•½¬26”N“xuJAXAq‹ó–{•”‚É‚¨‚¯‚éŒö•åŒ^Œ¤‹†vCi5j‚Œ}Šp‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½‚¸“x‚Œø—¦CFD‰ðÍŽè–@‚ÌŒ¤‹†C‘ã•\
  8. i2013”N 8ŒŽ`2014”N 3ŒŽj@JAXAq‹ó–{•”F@wH25”N“x‘J‰¹‘¬ƒoƒtƒFƒbƒg‰ðÍ‚ÉŒü‚¯‚½”’l—¬‘©‚̉ü—ǁxC‘ã•\
  9. i2012”N10ŒŽ`2013”N 3ŒŽj@–^Ž©“®ŽÔH‹Æ‰ïŽÐF@ŽÔ‘̃Kƒ‰ƒX•\–ʏã‚̉t“H‚Æ‚»‚Ì‹OÕ‚̐”’lƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“
  10. i2006”N 2ŒŽ`2008”N 3ŒŽj@JAXA‘Œ¤F@’´‰¹‘¬ƒWƒFƒbƒg‚Ì—¬‘́E‰¹‹¿‰ðÍ
  11. i2006”N 2ŒŽ`2006”N 7ŒŽj@–^Ž©“®ŽÔH‹Æ‰ïŽÐF@ƒhƒAƒ~ƒ‰[‚©‚ç”­¶‚·‚鉹‹¿‰ðÍ
  12. i2004”N11ŒŽ`2006”N 3ŒŽj@–^»“S‰ïŽÐF@•¡”ƒWƒFƒbƒg‚Ì‘ŠŒÝŠ±Â‚̐”’l‰ðÍ
Ž‘ŠiEŽï–¡
  1. 2022”N“x“~‹G ƒXƒyƒCƒ“Œê‹Z”\ŒŸ’è 6‹‰i2023”N1ŒŽj
  2. 2021”N“xH‹G ŽÀ—pƒtƒ‰ƒ“ƒXŒê‹Z”\ŒŸ’莎Œ± 5‹‰i2021”N12ŒŽj
  3. 3‹‰ƒtƒ@ƒCƒiƒ“ƒVƒƒƒ‹Eƒvƒ‰ƒ“ƒjƒ“ƒO‹Z”\Žmi“ú–{FP‹¦‰ïji2021”N6ŒŽj
  4. ‘æ53‰ñƒnƒ“ƒOƒ‹”\—ÍŒŸ’莎Œ± 5‹‰i2019”N12ŒŽj
  5. ‘æ133‰ñTOEICŒöŠJƒeƒXƒg 920“_i2007”N9ŒŽj
  6. TOEFL CBT 237i2005”N10ŒŽj
  7. ’†Œ^Ž©“®ŽÔ‘æˆêŽí‰^“]–Æ‹–i1998”N11ŒŽj
Š‘®Šw‰ï
  1. AIAAiAmerican Institute of Aeronautics and Astronautics, ƒAƒƒŠƒJq‹ó‰F’ˆŠw‰ïj Senior Member (Lifetime Member)
  2. Vertical Flight Societyi‹Œ@•Ä‘ƒwƒŠƒRƒvƒ^[Šw‰ïj Member
  3. “ú–{q‹ó‰F’ˆŠw‰ï@³‰ïˆõ
  4. “ú–{—¬‘Ì—ÍŠw‰ï@³‰ïˆõ
  5. “ú–{‹@ŠBŠw‰ï@³‰ïˆõ
  6. iˆêŽÐj‰Î–òŠw‰ï@‰ïˆõ
  7. iŒöŽÐjŽ©“®ŽÔ‹Zp‰ï@‰ïˆõ
E—ð
  1. i2023”N 8ŒŽ`Œ»Ýj Visiting Researcher at University of Cambridge, UK (Hosted by Prof. P.G. Tucker)
  2. i2014”N 4ŒŽ`Œ»Ýj ‰¡•l‘—§‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰@@i‘åŠw‰@—HŠw•{@‹@ŠBEÞ—¿EŠC—mŒnHŠwêU@q‹ó‰F’ˆHŠw‹³ˆç•ª–ì^‹@ŠBHŠw‹³ˆç•ª–ì@•¹”CC@—HŠw•”@‹@ŠBEÞ—¿EŠC—mŒnŠw‰È@•¹”Cj@y‹³Žö
  3. i2012”N10ŒŽ`2014”N 3ŒŽj –¼ŒÃ‰®‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@‹ó—́E„iuÀ@•‹³
  4. i2011”N10ŒŽ`2012”N 9ŒŽj NASA Glenn Research Center, Ohio Aerospace Institutei•Ä‘j ‹qˆõŒ¤‹†ˆõ (Hosted by Dr. Meng-Sing Liou)
  5. i2011”N 4ŒŽ`2012”N 9ŒŽj JAXA/JEDIƒZƒ“ƒ^[@“ú–{ŠwpU‹»‰ï“Á•ÊŒ¤‹†ˆõPD@iŽó“üŒ¤‹†ŽÒF@“ˆ‰pŽu@ƒZƒ“ƒ^[’·j
  6. i2009”N 1ŒŽ`2009”N 2ŒŽj@ƒAƒCƒIƒB—§‘åŠwi•Ä‘j@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@‹qˆõŒ¤‹†ˆõ (Hosted by Prof. Z.J. Wang)
  7. i2008”N 4ŒŽ`2011”N 3ŒŽj@JAXA/JEDIƒZƒ“ƒ^[@ƒvƒƒWƒFƒNƒgŒ¤‹†ˆõ@iŽó“üŒ¤‹†ŽÒF@“ˆ‰pŽu@ƒZƒ“ƒ^[’·j
  8. i2004”N10ŒŽ`2006”N 7ŒŽj@–¼ŒÃ‰®‘åŠw@‘åŠw‰@@21¢‹ICOEƒvƒƒOƒ‰ƒ€uŒvŽZ‰ÈŠwƒtƒƒ“ƒeƒBƒAvRAiŒ¤‹†ƒAƒVƒXƒ^ƒ“ƒgj@iŽw“±‹³ˆõF@’†‘º‰À˜N@‹³Žöj
Šw—ð
  1. i2004”N 4ŒŽ`2008”N 3ŒŽj@–¼ŒÃ‰®‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@”ŽŽmŒãŠú‰Û’ö@iŽw“±‹³ˆõF@’†‘º‰À˜N@‹³Žöj
  2. i2006”N 8ŒŽ`2007”N 7ŒŽj@ƒ~ƒVƒKƒ“‘åŠwi•Ä‘j@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@ŒðŠ·—¯Šw¶ (Žw“±‹³ˆõ: Prof. Philip L. Roe and Prof. Bram van Leer)
  3. i2002”N 4ŒŽ`2004”N 3ŒŽj@–¼ŒÃ‰®‘åŠw@‘åŠw‰@HŠwŒ¤‹†‰È@q‹ó‰F’ˆHŠwêU@”ŽŽm‘OŠú‰Û’ö@iŽw“±‹³ˆõF@’†‘º‰À˜N@‹³Žöj
  4. i1998”N 4ŒŽ`2002”N 3ŒŽj@“Œ‹žH‹Æ‘åŠw@HŠw•”@‹@ŠB‰F’ˆŠw‰È@iŽw“±‹³Š¯F@‹{“à•q—Y@‹³ŽöC“X‹´Œì@•‹³Žöj
ŠwˆÊ˜_•¶Fw‹É’´‰¹‘¬ÕŒ‚”gŠ±Â—¬‚ê‚̐”’l‰ðÍx






Copyright © 2014- Aerodynamics Laboratory, Yokohama National University, All rights reserved.