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Abstract 

Roles of flux functions (such as SLAU2 [Kitamura, K., and Shima, E., J. Comput. Phys., Vol.245, 2013, pp.62-

83]), limiters, and reconstructed variables are thoroughly investigated in problems related to hypersonic heating 

issues, i.e., shock anomalous solutions (e.g., carbuncle phenomenon) and shock-interaction heating. Through 

numerical tests comparing those different combinations, it is revealed that each of those factors has great impacts on 

the solutions at almost the same level. In particular, flux functions having at most one intermediate cell at the 

captured shock show improved robustness against shock anomalies as the spatial accuracy increases, whereas those 

containing a few cells to represent the shock tend to do the opposite. Among many possible combinations, SLAU2, 

AUSM+-up, or AUSMPW+ along with = -1, minmod-limited monotone upstream-centered schemes for 

conservation laws (MUSCL) interpolation for primitive variables show acceptable performance in the present study, 

as confirmed by the severe Type IV shock-interaction heating problem. In addition, conservation of mass flux across 

a shockwave is proven to be essential in accurate heating computations, indicating a possible, further modification 

of SLAU2. 
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1. Introduction 

In spite of maturity of the present computational fluid dynamics (CFD) technology, its reliability is still debated 

in hypersonic flows, particularly on shock anomalies [1-4] and heating prediction capabilities [5-6]. In a series of the 

authors’ past work [4-6], the following three properties (or called “Hypersonic CFD Tips” hereafter) of Euler fluxes 

were found essential for accurate hypersonic heating computations: 

A) Robustness against shock anomalies (e.g., carbuncle phenomenon) 

B) Total enthalpy preserving (proved to be less critical than the other two, though) 

C) (Economical) boundary-layer resolving 

Although there found no methods perfectly satisfying all the three items, the authors proposed promising candidates 

in [7] that possess them in most cases, i.e., they are relatively robust against shock anomalies (property A). These 

anomalies include the carbuncle phenomenon [1-4] – a notorious problem of the Euler fluxes – which appears 

depending on many factors, such as flow conditions (Mach number, Reynolds number, specific heat ratio), 

computational grid (grid density, cell aspect ratio), and computational conditions (Euler flux, order of accuracy). 

Among these factors, we had focused on spatially first-order accurate performances of flux functions [4-7], based on 

the claim that “Carbuncle-like features are more evident in the plain first-order” made by Pandolfi and D’Ambrosio 

in [2]. This statement is reasonable because jumps of variables at cell interfaces generally decrease with the order of 

accuracy in space. Remembering the fact that shock-capturing methods allow at least one intermediate cell inside the 

shock, and that the shock internal structure is expressed only numerically [4-11], anomalous solutions arising from 

such a numerically-defined zone are expected to be suppressed by thinning the region (sharper shock capturing) at a 

higher-order of accuracy. However, universality of this expectation is questionable for various flux functions and 

flux limiters available to date. This is partly because some flux functions (e.g., SLAU2 [7]) are designed to feed 

proper amount of dissipation to the captured shock at first-order spatial accuracy, and partly because strong limiters 

(e.g., minmod [12]) tend to yield first-order accuracy near discontinuities, whereas weak ones (e.g., superbee [12]) 

try to keep the second-order† as much as possible in expense of robustness (as widely known, higher-order accurate 

computations more likely oscillate at discontinuities). Thus, for stable and robust shock capturing, there may be 

appropriate combinations of a flux function and a limiter, which will be explored in the current work. 

                                                           
†  In actuality, those spatial orders of accuracy are further reduced to one or even zero by non-differentiable limiters at 
discontinuities. From now, however, this explanation is omitted for brevity. 
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A recent work by Tu et al. [13] extended the evaluation of flux functions in [4] to the fifth order weighted-

compact-nonlinear-scheme (WCNS). From their extensive survey, however, they concluded without reaching the 

concrete reasons that the high-order scheme may or may not be more stable than the low-order schemes depending 

on given computational conditions and grids. This revealed the need for further examinations on the relation 

between the shock anomalies and the spatial order of accuracy in a step-by-step manner, i.e., comparison between 

the first and second orders of accuracy (as will be done here). Coratekin et al. [14] conducted such a work a decade 

ago, but with only a few flux functions and limiters employed for limited test cases, and they recommended no 

combinations of a flux and a limiter, as opposed to the present work. Moreover, the work here will deal with the 

Edney’s type IV shock/shock interaction [15], which is known to yield a very severe surface heating, but whose 

best-suited flux function and/or  limiter has not been clarified yet. 

Another important finding in the past work [7] and also by related researchers‡ is that even if the shock is 

smoothly captured (property A), and even if the chosen Euler flux is the one designed to satisfy properties B and C, 

the wall-heating profile may not be computed accurately. This odd behavior was observed only for a specific choice 

of a flux function (SLAU2 [7]), a limiter, and variables used for reconstruction. SLAU2 has been gaining its 

popularity recently: its low-speed performance has been studied in [16]; its variants have been suggested in [17]; its 

extension to multiphase flows has been conducted in [18]. Thus, the current discussion will be explored in depth not 

only from academic curiosity, but also for further improvements of SLAU2 and possibly other fluxes. 

The present paper will revisit the shock-robustness problem first, using several common or recently-proposed 

flux functions with (at most) second-order accuracy. Then, we will compute heating profiles over a blunt-body with 

and without a shock/shock interaction. In each test case, method-to-method comparisons and discussions will be 

made for Euler fluxes, limiters, and reconstructed variables. Discussions will include the effect of a captured 

shockwave thickness, and introduce a new key element for accurate heating computations. 

2. Numerical Methods 

2.1 Governing Equations 

The governing equations are the compressible Euler or Navier-Stokes equations as follows: 

                                                           
‡ Private communication with Hiroaki Nishikawa, National Institute of Aerospace, Aug. 2010. 
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where  is the density, ul velocity components in Cartesian coordinates, E total energy per unit mass, p pressure, 

H total enthalpy (H = E + (p/) ), and T temperature. The working gas is air approximated by the calorically 

perfect gas model with the specific heat ratio  =1.4. The Prandtl number is Pr=0.72. The molecular viscosity  

and thermal conductivity  are related as =cp/Pr where cp is specific heat at constant pressure. The viscosity  is 

calculated by the Sutherland’s formula. These equations are discretized and solved with a finite-volume code. 

2.2 Numerical Methods 

Inviscid numerical fluxes at cell-interfaces are calculated by one of the following Euler fluxes: 

- Roe: Roe’s approximate Riemann solver (Flux-Difference-Splitting, FDS) [19] 

- Roe (E-fix): Roe [19] with Harten’s entropy-fix (coefficient = 0.2) [20] 

- HLLE (Harten-Lax-van_Leer-Einfeldt) (Approximate Riemann Solver): HLL (Harten-Lax-van_Leer) [21] 

with Einfeldt’s wave estimation [22] 

- HLLC (Harten-Lax-van_Leer with Contact) (Approximate Riemann Solver) [23]: Contact-resolving 

extension of two-wave HLL [21] 

- Van Leer (Flux-Vector-Splitting, FVS) [24] 

- Hänel (Flux-Vector-Splitting, FVS) [25]: Total enthalpy preserving modification to Van Leer FVS [24] 
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- AUSM+-up [26]: AUSM (Advection Upwind Splitting Method) family 

- SLAU2 [7]: Improved SLAU (Simple Low-dissipation AUSM) [27]  

- AUSM+-up2 [7]: Combination of AUSM+-up [26] mass flux and SLAU2 [7] pressure flux 

- AUSMPW+ [28]: AUSM-family featuring multidimensional pressure weighting function 

- SD-SLAU (Shock Detecting SLAU) [29]: SLAU [27] with multidimensional shock sensor 

- HLL-CPS-Zroe (HLL convective-pressure split Zha-Bilgen using Roe-averaged wave estimates) [30]: Hybrid 

of HLL [21] for mass flux and Zha-Bilgen FVS [31] for pressure flux 

Table 1 summarizes how each flux function satisfies the three properties mentioned in Introduction. Also, let us 

categorize those fluxes as to how thin or broad they capture shocks (a ‘thin’ shock stands for that having at most one 

intermediate cell inside, whereas a ‘broad’ shock is represented by a few cells) as listed below (and as also included 

in the Table 1): 

- ‘Thin’ shock capturing: Roe, Roe (E-fix), HLLC, AUSM+-up, and AUSMPW+ 

- ‘Broad’ shock capturing: HLLE, Van Leer, Hänel, SLAU2, AUSM+-up2, SD-SLAU, and HLL-CPS-Zroe 

Note that the term ‘broad’ does not necessarily stand for ‘too diffusive.’ It was reported in [7, 29] that SLAU2, 

AUSM+-up2, and SD-SLAU have enough resolution both at shocks and boundary-layers (Appendix A shows that 

those fluxes well resolve the boundary layer, in contrast with Hänel and HLL-CPS-Zroe).  

The spatial accuracy guaranteed 2nd-order (by MUSCL with = -1 [32] unless stated otherwise) at best. Either of 

minmod [12], Van Albada (coefficient = 10-6) [33], or superbee [12] flux limiter function (slope limiter) is employed, 

along with two-stage, 2nd-order Runge-Kutta or lower-upper symmetric Gauss-Seidel (LU-SGS) for time 

integration. 

3. Numerical Tests 

3.1 Shock Anomaly Problem 

3.1.1  1.5D Normal Shock (Euler Eqs.) 

This problem is called “1.5D (or 1-1/2-D) problem,” which was conducted in Ref. 4 to examine how schemes are 

robust in capturing a steady normal shock in a two-dimensional rectangular domain (Fig. 1). This setup mimics a 

close-up view of a hypersonic flow ahead of a stagnation point of a two-dimensional blunt-body, and hence, largely 

predicts results of such flow computations. In this paper we briefly review the problem and refer to Ref. 4 for details. 
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As shown in Fig. 1, the computational grid comprises 50×25 cells evenly spaced without perturbations. A steady 

shock that includes an intermediate state is prescribed with initial conditions for left (L: i≤12) and right (R: i≥14) 

following the Rankine-Hugoniot conditions across the normal shock. The internal shock conditions (M: i=13) are as 

follows: 

1) The density is given as 

where the shock-position parameter  = 0.0, 0.1, ... , 0.9. The initial shock is imposed exactly on the cell-interface 

when =0.0, for instance, and at the cell-center when =0.5. 

2) The other variables are calculated based on ρM so that all variables lie on the Hugoniot curve. The shock is 

aligned in one direction in the two-dimensional field, with the freestream Mach number M∞=6.0. No perturbations 

are introduced to the initial condition either. 

The computations are conducted for 40,000 steps with CFL=0.5. If a scheme is stable for all the shock positions 

of , the scheme can be labeled as 1.5D stable. 

Typical solutions are shown in Fig. 2. In Fig. 2, as stated in [4], 

- ‘2’ denotes a stable and symmetric solution with at least three orders of (L2-norm of) density residual 

reduction (Fig. 2a). 

- ‘1’ denotes an asymmetry and/or oscillation of the shock confined within two cells of the shock normal 

direction (Figs. 2b, 2c). 

- ‘0’ denotes an unstable solution usually associated with total breakdown of the shock (“carbuncle”). The 

residual stagnated at a significant value (Fig. 2d). 

These points introduced in Ref. 5 are used in Table 2 for the first order (both in space and time) results: given in 

the right column are the total points that indicate degrees of shock robustness for each scheme (maximum: 20 

points). The following observations are new: 

- HLLC behaved like Roe, as expected (but not actually tested thus far). 

- SD-SLAU, which can eliminate multidimensional oscillations by shock-detecting function, unfortunately 

yielded carbuncle under some circumstances (0.0 ≤  ≤ 0.1, 0.4 ≤  ≤0.9). 

- HLL-CPS-Zroe showed slightly better performance (17 points) than its ingredient HLLE (16 points). 

ρM=  ρL+(1-)ρR (2) 
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The other results presented in this table were already reported in the past work [4, 5, 7], but repeated again here 

for reference (since they are essential for comparison with the 2nd-order results presented later). From these results, 

the following five flux functions will be selected and used in the rest of the paper. 

- ‘Thin’ shock capturing fluxes: Roe (E-fix), AUSM+-up, and AUSMPW+ 

- ‘Broad’ shock capturing fluxes: Hänel and SLAU2 

Roe (E-fix) is the most carbuncle-prone example; Hänel is known to be relatively robust against shocks but its 

boundary-layer resolution is poor; the other three have good performances in capturing shocks and boundary-layers 

both. Results using fluxes other than those five are expanded in [34]. 

3.1.1.1  Effects of 2nd-order Extension 

In Tables 3, the corresponding 2nd-order MUSCL results are summarized (minmod-limited = -1 MUSCL with 

primitive-variable reconstruction), along with the 1st-order results and shockwave thicknesses repeated for ease of 

reference: 

- Compared with the 1st-order cases, ‘thin’ shock capturing fluxes [Roe (E-fix), AUSM+-up, and AUSMPW+] 

showed improved robustness against shock anomalies (following the claim by Pandolfi and D’Ambrosio in 

[2]), whereas the ‘broad’ counterparts [Hänel and SLAU2] did the opposite (on the contrary to [2]). 

- At 2nd-order, AUSM+-up marked the highest score (20 points), followed by AUSMPW+ (18 points). 

We stated in [7] that the proper amount of dissipation was fed to SLAU2 (and AUSM+-up2); This is true for 1st-

order spatial accuracy, but does not seem so for 2nd-order from the current results. This is understandable 

remembering the fact that a higher-order spatial accuracy generates a thinner shock in general, which apparently 

goes against the strategy taken in [7] where shock anomalies were suppressed by the dissipation addition (which 

usually widens the shock). This suggests that it would be preferred to add different amount of dissipation to a flux 

function (specifically, a ‘broad’ shock capturing flux function) depending on spatial order of accuracy. 

3.1.1.2  Effects of Flux Limiters and Reconstructed Variables 

Then, Tables 4 and 5 shows the results of selected fluxes with different limiters and different reconstructed 

variables. When primitive variables are interpolated (denoted as “prm”), 

- Different limiters resulted in different total points. The minmod limiter showed the highest scores, and in 

most cases, the Van Albada the next, and the superbee the last, in the order of the strength of the limiter. 
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- Differences in the results due to limiters can be larger than those due to fluxes. For instance, SLAU2 scored 

10 to 17 by different limiters, but the difference from AUSM+-up’s score (20) is only 3 for the same 

(minmod) limiter cases. 

These tendencies hold for both ‘thin’ (e.g., AUSM+-up) and ‘broad’ (e.g., SLAU2) shock capturing flux 

functions. This is against our anticipation from the findings in Table 3 that the effects of flux limiters would have 

been different depending on to which group the flux functions belongs, i.e., ‘thin’ shock capturing fluxes (e.g., 

AUSM+-up) would favor superbee (the weakest limiter – closest to 2nd-order) while ‘broad’ ones (e.g., SLAU2) 

would prefer minmod (the strongest limiter – closest to 1st-order). Thus, it is interpreted that flux limiters have 

almost the same (or even higher) level of influence on the behaviors of captured shocks as flux functions do. A 

combination of a ‘thin’ shock capturing flux and a weak limiter appears to have created insufficient dissipation at 

shocks, leading to, as often reported in literature ([27], for instance), over/undershoots. 

Furthermore, when we focus on the effects of variables for reconstruction in the same table, 

- Reconstruction using conservative variables (denoted as “csv”) rather than primitive ones (“prm”) generally 

destabilized solutions, regardless of which ‘thin’ or ‘broad’ shock capturing is used. Use of density, 

momentum, and pressure (denoted as “csv+p”) falls in the middle. For instance, the full score marked by 

AUSM+-up is guaranteed only for the minmod-prm combination. 

3.1.1.3  Effects of MUSCL Parameter 

In addition, the parameter  in MUSCL is changed from -1 to 1/3 (from 2nd- to 3rd-order in 1D, smooth flows). 

The results in Table 6 show that 

- AUSM+-up with minmod-prm combination still achieved 20 points. This combination seems to have 

produced proper amount of dissipation. 

Thus, the reconstructed variables and the formal order of accuracy in space have as much impacts as the flux 

limiters on the shock-robustness. 

Therefore, we should aware that each flux function has its favorite combination of limiter and reconstructed 

variables at each formal spatial accuracy, and such a combination can be sought by numerical experiments as done 

here. In the rest of the paper, out of many possible combinations, the minmod-prm combination with  =-1 (denoted 

as ‘minmod set’ here after) is employed as the default, and sometimes compared with Van Albada-(csv+p) with  

=1/3 (denoted as ‘Van Albada set’). We will then proceed to more realistic, 2D heating problems next. 
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3.2 Viscous Heating Problems 

3.2.1  Blunt-Body, Hypersonic Heating Problem (Navier-Stokes Eqs.) 

Now we consider hypersonic heating on the blunt-body wall. The freestream conditions (Table 7) and the model 

radius (r =20mm) are the same as in [5, 7]. The wall temperature is prescribed as Tw =300 K (isothermal wall 

condition), and the grid lines are clustered to the wall so that the cell Reynolds number (Reynolds number based on 

the minimum spacing min) Recell =1.3. The grid has 160 × 160 cells and shown in Fig. 3a as well as the coordinates, 

whereas the grid shown in Fig. 3b will be used later in the shock interaction case. 

The numerical fluxes compared here are Roe (E-fix), AUSM+-up, and AUSMPW+ (‘thin’ shock capturing), and 

Hänel and SLAU2 (‘broad’ shock capturing); Results using other fluxes are found in [34]. Spatially second-order at 

maximum is guaranteed by MUSCL reconstruction (= -1) for primitive variables with minmod limiter (minmod 

set) or =1/3 with Van Albada – (csv + p) (Van Albada set) for the inviscid term, while central difference is used for 

the viscous term. As for time integration, LU-SGS is used with CFL=200, and the computations were conducted for 

100,000 steps to achieve approximately three orders reduction of the density residual. 

The computed flowfields by the minmod set are displayed in Fig. 4, along with the corresponding surface 

pressure and heating profiles in Fig. 5. All the fluxes showed similar flowfields with slight differences near the 

shock, and no clear evidence of carbuncles is observed. Thus, at least for these given flow conditions and the grid, 

those methods selected are free from shock anomalies, and hence, effects of the shock thickness is not discussed 

here. Smooth surface pressure is obtained by any flux used, but as for surface heating, only Roe (E-fix) showed 

asymmetric and wavy patterns; Hänel underpredicted the values. These results are largely consistent with the results 

reported in [5, 7] in which the Van Albada set was applied, except for SLAU2. 

The SLAU2 results using the Van Albada set (as in [7]) is shown in Figs. 6a, and 7a. These results demonstrate 

that the SLAU2 favors the minmod set. These confirm the 1.5D shock robustness results in Table 5, i.e., SLAU2 

preferred the minmod set (17 points) to the Van Albada set (10 points). 

Now, SLAU2 flux is modified by fixing the function “g” [in Eq. (A.2d) in Appendix B] as unity so that full 

upwinding is realized (Private communication with Dr. Eiji Shima, JAXA, Jan. 16, 2013) across the shock; in other 

words, the role of “g” is tested here. The effect is evident in Figs. 6b and 7b. Although the flowfields look somewhat 

contaminated, surface pressure was not affected considerably, and the smoothness of heating profile was greatly 

improved even with Van Albada set. 
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In order to get deeper insights, we extracted total enthalpy and (x-directional) mass flux along the centerline, as 

shown in Figs. 8 (minmod set) and 9 (Van Albada set). In Fig. 8, all the fluxes tested showed mass flux jump at the 

shock, prominent in SLAU2 (Fig. 8d); Roe (E-fix) showed both total enthalpy and mass flux jumps at the shock; the 

other fluxes were designed to keep the total enthalpy constancy and actually behaved so at the shock. 

When the Van Albada set was applied (Fig. 9), however, 

- SLAU2 showed huge deviations both in mass flux (79%) and total enthalpy (57%), and the total enthalpy 

behind the shock was slightly reduced (-2%) (Fig. 9a), whereas they were cured when g=1 (Fig. 9b). 

Once errors are introduced to the mass flux, they have impacts on all the variable-vector components used in AUSM 

family (i.e., mass, momentum, and total enthalpy conservation), as seen in Eqs. (A.1a), (A.1b) in Appendix B. This 

is why SLAU2 without modification showed both the total enthalpy and mass flux errors (Fig. 9a), and they were 

suppressed by setting g=1 (Fig. 9b), leading to better representation of surface heating profile (Fig. 7b). Note that 

this symptom did not appear when the (unmodified) SLAU2 and minmod limiter were combined, because the 

minmod limiter can suppress such spurious oscillations from the mass flux. Moreover, Hänel, AUSM+-up, and 

AUSMPW+ had been designed to keep the mass flux. Therefore, preservation of mass flux, which has not drawn 

particular attentions yet, must be carefully taken into account when a flux function and a limiter are chosen or 

developed, specifically when hypersonic heating is concerned. Then, the following item should be added to the 

“Hypersonic CFD Tips” in the Introduction: 

B-2) Mass flux preserving 

3.2.2  Hypersonic Type IV Shock/Shock Interaction and Heating Problem (Navier-Stokes Eqs.) 

Finally, methods discussed above are applied to another well-known test involving a shock/shock interaction 

[35-38], classified as type IV according to Edney [15]. Although the type IV interaction is known to be unsteady 

[37], we conducted steady computations with CFL=1,000 for 100,000 timesteps because we are interested in only 

the final, time-averaged solutions. Nevertheless, the present case involves the most severe heating known to date, 

and hence, is considered to represent complex shock-interacting flows in reality (e.g., [39-41]). The computational 

grid consists of 320 (circumferential) × 480 (wall-normal) cells clustered to the wall (Recell =1) but not specifically 

adapted to the shock location (Fig. 3b). The freestream conditions (Table 8) and the model radius (r =38.1mm) are 

the same as in [37]. The wall temperature is prescribed as Tw =294.44 K (isothermal wall condition). 
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Figures 10, 11, and 12 show overviews and blowup views of selected results (pressure contours). From Roe (E-

fix) results both in Figs. 10a and 11a (in which different limiter sets are used), the carbuncle is observed ahead of the 

cylinder nose, even when the type IV shock interaction is formed (This may be the first time to report the 

carbuncle/type-IV interaction). The other cases successfully reproduced the type IV interaction structure, including a 

supersonic jet emanating from a shock/shock interaction point, a jet shock near the wall, and resulting drastic 

pressure rise (Fig. 12c). Indeed, those results looked very similar, although SLAU2 needed to start the computation 

from the SLAU result as the initial condition. Thus, again, it is not discussed here whether the shock is ‘thin’ or 

‘broad.’ 

The carbuncle in Roe (E-fix) is more clearly observed from the enlarged view in Fig. 12a: Streamlines passing 

through the carbuncle region are affected by the deformed shock (Fig. 12b), although the key structure of the type 

IV is maintained. AUSM+-up, on the other hand, showed no carbuncle, as seen in Fig. 12c. From those results, it is 

demonstrated that the carbuncle can appear even in such complex shock/shock interacting flows: There may be 

‘hidden’ carbuncle(s) in 3D, further complex flow simulations (in which it is almost impossible to identify 

carbuncles by human eyes [39-41]), unless a shock-robust method is carefully chosen and employed. 

Then, surface pressure and heating rates are compared for different methods and also with measured data in Figs. 

13-15. The numerical and experimental heating values are standardized by the corresponding undisturbed stagnation 

values for each, as done by Thareja et al. in [38]. For the computed heating results, the final solutions (after 100,000 

timesteps) as well as averaged values over the last 50,000 timesteps are shown. For each case, agreement between 

the final and averaged solutions is observed around a peak region ( ≈ -20 deg.), indicating fair convergence. At the 

region upward ( > 30 deg.), however, results except for Hänel showed some variations. In this region, unsteady, 

upward disturbance (which is beyond the scope of the present work) was already reported in unsteady simulations 

by Zhong [37]. Thus, we will limit our discussions to the fairly converged zone ( <0 deg.) when comparing the 

computed and experimental results. 

As for pressure, all the computed results attained the peak value (p/p0≈8) at nearly the right position ( ≈ -20 

deg.). The peak location of heating (q/q0≈13 at, again,  ≈ -20 deg) was also reproduced by any method, but its value 

is scattered among them. When the minmod set is used, AUSM+-up (Fig. 13c) showed the closest peak value to the 

measured one, followed by Roe (E-fix) (Fig. 13a), showing slightly smaller peaks. Hänel, as anticipated from the 
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previous test (Fig. 5b), poorly underpredicted the heating (Fig. 13b). SLAU2 and AUSMPW+ also showed smaller 

heating than the measured data, but discrepancies are not as wide as that in Hänel. They are summarized in Fig. 14. 

For the cases of the Van Albada set (Fig. 15), AUSM+-up exhibited a much higher peak (q/q0≈20) (Fig. 15b), 

although still in reasonable agreement with the experimental data in its profile. In contrast, Roe (E-fix) showed a 

lower peak heating (q/q0≈9) (Fig. 15a), partly due to the stronger influence of the carbuncle as seen in Figs. 12a and 

12b. Other fluxes behaved similarly to the cases of minmod set, and thus, omitted. 

The results and discussions above highlighted importance of the roles of limiters, formal accuracy, and 

reconstructed variables as well as those of flux functions. The best combination may vary depending on problems, 

but from the present results, the following methods can be recommended for hypersonic heating computations: 

SLAU2, AUSM+-up, or AUSMPW+ along with = -1, minmod limited MUSCL interpolation for primitive 

variables (minmod set). AUSM+-up seems the most robust and accurate at this stage, but a further improved SLAU2 

may substitute it after the mass flux conservation is enforced in a careful manner near future. 

 

4. Conclusions 

We have surveyed the roles of flux functions, limiters, and reconstructed variables in problems related to shock 

anomalies (e.g., carbuncle phenomenon), and shock-interaction heating. From numerical tests, it has been revealed 

that the limiters and the reconstructed variables have great impacts on the solutions as much as flux functions do. In 

particular, flux functions having at most one intermediate cell at the captured shock show improved robustness 

against shock anomalies as the spatial accuracy increases (e.g., Roe, AUSM+-up, and AUSMPW+), whereas those 

containing a few cells to represent the shock tend to do the opposite (e.g., Hänel and SLAU2). Among many 

possible combinations, the following set showed acceptable performance in the present study: 

- SLAU2, AUSM+-up,  or AUSMPW+ flux along with = -1, minmod-limited MUSCL interpolation for 

primitive variables 

These combinations achieved satisfactory robustness against shock anomalies, and once the shock was captured 

well, the resulting surface heating over a blunt body was also predicted accurately, even when severe shock-

interactions were present. 

In addition, the following item B-2) has been newly added to the “Hypersonic CFD Tips” that are now 

completed as: 
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A) Robustness against shock anomalies (e.g., carbuncle phenomenon) 

B-1) Total enthalpy preserving 

B-2) Mass flux preserving 

C) (Economical) boundary-layer resolving 

In fact, 

- Heating errors in SLAU2 can be cured when the mass flux is conserved across shocks (which has not drawn 

particular attentions yet) either by a modification to the flux (g=1) or by carefully choosing a limiter and 

reconstructed variables. 

Thus, incorporation of the bullet B-2, as well as the formal spatial accuracy and the reconstructed variables, will 

be the immediate next modification to SLAU2. 

Finally, the Roe flux yielded the carbuncle even in the type IV shock/shock interacting flow. In such a complex 

flowfield, the carbuncle is hardly detected, specifically in 3D, and thus the need of shock-robust methods is 

confirmed. 
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Appendix A: Laminar Boundary-Layer over Flat Plate (Navier-Stokes Eqs.) 

A M∞=0.2 flow over a flat plate is solved as in [42] to investigate boundary-layer resolutions of the flux 

functions (Fig. A1). The computation was carried out for 50,000 time steps with CFL = 0.5 for each case. In most 

cases the density residual dropped at least three orders. The results showed that SLAU (representing SLAU2, 

AUSM+-up2, and SD-SLAU) and other most fluxes reproduced Blasius’ analytical velocity profile, whereas Hänel, 

one of notoriously dissipative solvers, did not. HLL-CPS-Zroe solution is close to Hänel, although this flux preserves 
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contact discontinuity in 1D [30]. Thus, the performance of HLL-CPS-Zroe, developed very recently, is represented 

by Hänel in a large portion of the paper. 

Appendix B: SLAU2 Flux Formulation 

Liou has developed the AUSM-family numerical fluxes (e.g., [26]), commonly expressed as: 

SLAU2 scheme [7], one of AUSM-family schemes, is now briefly explained. The mass flux is: 

where g is a switching function to a fully upwind scheme at a strong expansion, and the speed of sound, being 

arithmetic mean of the both side values for this flux, is: 

The pressure flux is 
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Figure 1. Computational grid and conditions for 1.5D steady normal shock test. 
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c) 

 

d) 

 

Figure 2. Typical solutions for 1.5D steady shock test: a) 2 (Good: Stable), b) 1 (Fair: Oscillatory),  c) 1 

(Fair: Asymmetry), and d) 0 (Poor: Carbuncle) [5]. 
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Figure 3.  Computational grids, (a) Hypersonic, viscous, 2D blunt-body problem (160160; every other 

grid lines are shown), and (b) Type IV shock interaction heating (320480; every other four grid lines are 

shown). 

a)  

 

b)  c)  

 

d)  

 

e)  

Figure 4.  Hypersonic, viscous, 2D blunt-body problem results (Mach number contours at 100,000 steps) of 

minmod set, a) Roe (E-fix), b) Hänel, c) AUSM+-up, d) SLAU2, and e) AUSMPW+. 
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Figure 5: Surface pressure and heating profiles of minmod set results, a) Roe (E-fix), b) Hänel, c) AUSM+-up, 

d) SLAU2, and e) AUSMPW+. 
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Figure 6.   Hypersonic, viscous, 2D blunt-body problem results (Mach number contours at 100,000 steps) of  

Van Albada set, a) SLAU2, and b) SLAU2 (g=1). 
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(b) 

 

Figure 7: Surface pressure and heating profiles of  Van Albada set results, a) SLAU2, and b) SLAU2 (g=1). 
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Figure 8: Total enthalpy and mass flux profiles in x-direction of minmod set results, a) Roe (E-fix), b) 

Hänel, c) AUSM+-up, d) SLAU2, and e) AUSMPW+. 
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Figure 9: Total enthalpy and mass flux profiles in x-direction of Van Albada set results, a) SLAU2, and b) 

SLAU2 (g=1). 
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Figure 10: Type IV shock/shock interaction solutions (minmod set), a) Roe (E-fix), b) Hänel, c) AUSM+-up, 

d) SLAU2, and e) AUSMPW+. 
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Figure 11 Type IV shock/shock interaction solutions (Van Albada set), a) Roe (E-fix), and b) AUSM+-up. 

(a)  

 

(b) 

 

(c) 

 

Figure 12: Type IV Shock/Shock Interaction problem (close-up views), Van Albada set, a)  Roe (E-fix), b) 

Roe (E-fix) with streamlines, and c) AUSM+-up. 
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(a)  

 

(b)  

Figure 13: Type IV Surface pressure and heating profiles (minmod set), a) Roe (E-fix), b) Hänel, c) 

AUSM+-up, d) SLAU2, and e) AUSMPW+ (continued). 
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(c)  

(d)  

Figure 13: Type IV Surface pressure and heating profiles (minmod set), a) Roe (E-fix), b) Hänel, c) 

AUSM+-up, d) SLAU2, and e) AUSMPW+ (continued). 
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(e)  

Figure 13: Type IV Surface pressure and heating profiles (minmod set), a) Roe (E-fix), b) Hänel, c) 

AUSM+-up, d) SLAU2, and e) AUSMPW+ (concluded). 

 

Figure 14: Type IV Surface heating profiles (minmod set) summary. 
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(a)  

 

(b)  

Figure 15: Type IV surface pressure and heating profiles (Van Albada set), a) Roe (E-fix), and b) AUSM+-

up. 
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Figure A1: Computed laminar boundary-layers over flat plate (Uniform flow: Mach 0.2), = 1/3, (csv+p). 
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Table 1.  Three properties satisfied by flux functions 

Numerical Flux 

Functions 

Property A: 

 Robustness against 

shock anomalies 

 (at 1st-order) 

Property B: 

 Total enthalpy 

preserving 

 

Property C: 

(Economical) 

boundary-layer 

resolving 

Captured Shock 

Roe Poor No Good Thin 

Roe (E-fix) Poor No Good Thin 

HLLE Fair No Poor Broad 

HLLC Poor No Good Thin 

Van Leer Good No Poor Broad 

Hänel Good Yes Poor Broad 

AUSM+-up Fair Yes Good Thin 

SLAU2 Good Yes Good Broad 

AUSM+-up2 Good Yes Good Broad 

AUSMPW+ Fair Yes Good Thin 

SD-SLAU Poor Yes Good Broad 

HLL-CPS-Zroe Fair No 
Poor 

(see Appendix A) 

Broad 
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Table 2.  1.5D test results for various numerical flux functions, 1st-order both in time and space. 

Numerical Flux Functions 
Total Shock-

Robustness Scores 

Roe [4,5] 8 

Roe (E-fix) [4,5] 0 

HLLE [4,5] 16 

HLLC 8 

Van Leer [5] 20 

Hänel [5] 20 

AUSM+-up [4,5] 16 

SLAU2 [7] 20 

AUSM+-up2 [7] 20 

AUSMPW+ [4,5] 17 

SD-SLAU 4 

HLL-CPS-Zroe 17 
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Table 3.  1.5D test results for various numerical flux functions, 2nd-order both in time and space (by minmod, 

prm) (=-1 MUSCL). 

Numerical Flux Functions Total Shock-Robustness Scores (1st-order) (Captured Shock) 

Roe (E-fix) 8 (0) (Thin) 

Hänel 17 (20) (Broad) 

AUSM+-up 20 (16) (Thin) 

SLAU2 17 (20) (Broad) 

AUSMPW+ 18 (17) (Thin) 

 

Table 5.  1.5D test results for various limiters 

and reconstructed variables (AUSM+-up) (2nd-

order both in time and space) (=-1 MUSCL). 

Numerical Flux Functions 
(limiter, variable) 

Total Shock-
Robustness Scores 

AUSM+-up  
(minmod, prm) 

20 

AUSM+-up  
(Van Albada, prm) 

11 

AUSM+-up  
(superbee,prm) 

14 

AUSM+-up  
(minmod, csv+p) 

17 

AUSM+-up  
(Van Albada, csv+p) 

11 

AUSM+-up  
(superbee, csv+p) 

11 

AUSM+-up  
(minmod, csv) 

16 

AUSM+-up  
(Van Albada, csv) 

9 

AUSM+-up  
(superbee, csv) 

2 

 

Table 4.  1.5D test results for various limiters and 

reconstructed variables (SLAU2) (2nd-order both in 

time and space) (=-1 MUSCL). 

Numerical Flux Functions 
(limiter, variable) 

Total Shock-
Robustness Scores 

SLAU2  
(minmod, prm) 

17 

SLAU2  
(Van Albada, prm) 

10 

SLAU2  
(superbee, prm) 

10 

SLAU2  
(minmod, csv+p) 

13 

SLAU2  
(Van Albada, csv+p) 

10 

SLAU2  
(superbee, csv+p) 

1 

SLAU2  
(minmod, csv) 

0 

SLAU2  
(Van Albada, csv) 

0 

SLAU2  
(superbee, csv) 

0 
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Table 6.  1.5D test results for various numerical flux functions, limiters, and reconstructed variables (: shock 

location parameter [4]) (2nd-order both in time and space) (=1/3 MUSCL). 

Numerical Flux Functions 
(limiter, variable) 

Total Shock-
Robustness Scores 

AUSM+-up  
(minmod, prm, =1/3) 

20 

AUSM+-up  
(Van Albada, prm, =1/3) 

16 

AUSM+-up (Van Albada, 
csv+p, =1/3) 

15 

SLAU2  
(minmod, prm, =1/3) 

17 

SLAU2  
(Van Albada, prm, =1/3) 

10 

SLAU2 (Van Albada, 
csv+p, =1/3) 

11 

 

Table 7.  2D blunt-body flow conditions 

[5, 7] (Rer: Reynolds number based on 

the radius). 

M 8.1 
Rer 1.31105 

P [Pa] 370.6 
T [K] 63.73 

 

Table 8.  Type IV shock/shock interaction flow conditions [37] 

(Rer: Reynolds number based on the radius). 

M 8.03 
Rer 2.57105 

P [Pa] 985.01 
T [K] 111.56 

Shock angle [deg.] 18.1114 
 


